

Big Data Analytics

1. a. Define Big Data.

Big data refers to data that is so large, fast or complex that it's difficult or impossible to process using traditional methods.
Big data also encompasses a wide variety of data types, including the following: structured data, such as transactions and
financial records; unstructured data, such as text, documents and multimedia files; and. semi structured data, such as
web server logs and streaming data from sensors.

b. Explain different characteristics of Big Data Analytics

Characteristics of Big Data:
1. Volume
2. Velocity
3. Variety
4. Value

Volume: The main characteristic that makes data “big” is the sheer volume. It makes no sense to focus on minimum
storage units because the total amount of information is growing exponentially every year.
Variety: is one the most interesting developments in technology as more and more
Information is digitized. Traditional data types (structured data) include things on a bank statement like date, amount,
and time.
Velocity is the frequency of incoming data that needs to be processed.
Value: Analysis add value to your business is measured.

c. Write a note on missing values.

In statistics, missing data, or missing values, occur when no data value is stored for the variable in an observation. Missing

data are a common occurrence and can have a significant effect on the conclusions that can be drawn from the data.

2. a. Discuss different types of data source of big data analytics.

Types of Data Sources. Data can originate from a variety of different sources.
They are as follows:
Transactional data
Unstructured data
Qualitative/Export based data
Data poolers
Publicly available data

Transactional Data: Transactions are the first important source of data. Transactional data consist of structured, low
level, detailed information capturing the key characteristics of a customer transaction (e.g., purchase, claim, cash
transfer, credit card payment). This type of data is usually stored in massive online transaction processing (OLTP)
relational databases. It can also be summarized over longer time horizons by aggregating it into averages,
absolute/relative trends, maximum/minimum values, and so on.

Unstructured data: Embedded in text documents (e.g., emails, web pages, claim forms) or multimedia content can
also be interesting to analyze. However, these sources typically require extensive pre-processing before they can be
successfully included in an analytical exercise.

Qualitative/Expert based data: Another important source of data is qualitative, expert based data. An expert is a
person with a substantial amount of subject matter expertise within a particular setting (e.g., credit portfolio
manager, brand manager). The expertise stems from both common sense and business experience, and it is
important to elicit expertise as much as possible before the analytics is run. This will steer the modelling in
the right direction and allow you to interpret the analytical results from the right perspective. A popular example
of applying expert based validation is checking the univariate signs of a regression model. For example, one would
expect a priori that higher debt has an adverse.
Data poolers: Nowadays, data poolers are becoming more and more important in the industry. Popular examples
are Dun & Bradstreet, Bureau Van Dijck, and Thomson Reuters. The core business of these companies is to gather

data in a particular setting (e.g., credit risk, marketing), build models with it, and sell the output of these models
(e.g., scores), possibly together with the underlying raw data, to interested customers. A popular example of this in
the United States is the FICO score, which is a credit score ranging between 300 and 850 that is provided by the
three most important credit bureaus: Experian, Equifax, and TransUnion. Many financial institutions use these FICO
scores either as their final internal model or as a benchmark against an internally developed credit scorecard.

Publicly available data: Finally, plenty of publicly available data can be included in the analytical exercise. A first
important example is macroeconomic data about gross domestic product (GDP), inflation, unemployment, and so
on. By including this type of data in an analytical model, it will become possible to see how the model varies with
the state of the economy. This is especially relevant in a credit risk setting, where typically all models need to be
thoroughly stress tested. In addition, social media data from Facebook, Twitter, and others can be an important
source of information. However, one needs to be careful here and make sure that all data gathering respects both
local and international privacy regulations.

b. Discuss the applications of big data analytics.

Analytics is everywhere and strongly embedded in our daily lives.

The relevance, importance and impact of analytics are now bigger than ever before and, given that more and more
data are being collected and that there is strategic value in knowing what is hidden in data, analytics will continue
to grow.

Physical mail box: a catalogue sent to us through mail most probably as a result of a response modeling analytical
exercise that indicated, given my characteristics and previous purchase behaviour, we are likely to buy one or more
products from it.

Behavioral Scoring Model: Checking account balance of the customer from the past 12 months and credit
payments during that period, together with other kinds of information available to the bank, to predict whether a
customer will default on the loan during the next year.

Social Media: As we logged on to my Facebook page, the social ads appearing there were based on analyzing all
information (posts, pictures, my friends and their behaviour, etc.) available to Facebook. Twitter posts will be
analyzed (possibly in real time) by social media analytics to understand both the subject tweets and the sentiment
of them.

3. a. Briefly explain mobile intelligence and big data

Mobile Business Intelligence and Big Data Analytics on mobile devices is what some refer to as putting BI in your pocket.
Mobile drives straight to the heart of simplicity and ease of use that has been a major barrier to BI adoption since day one.

Kerzner explains his view on this topic:
They have been working on Mobile BI for a while but the iPad was the inflection point where I think it
started to become mainstream.
We have seen customers over the past decade who focused on the mobile space generally and mobile
applications in particular.
One client in particular told me that he felt like he was pushing a boulder up a hill until he introduced
mobility to enhance productivity.
Once the new smart phones and tablets arrived, his phone was ringing off the hook and he was trying to
figure out which project to say yes to, because he couldn’t say yes to everyone who suddenly wanted mobile
analytics in the enterprise.

Ease of Mobile Application Deployment

Three elements that have impacted the viability of mobile BI:
1. Location—the GPS component and location . . . know where you are in time as

well as the movement.
2. It’s not just about pushing data; you can transact with your smart phone based on

information you get.
3. Multimedia functionality allows the visualization pieces to really come into play.

Three challenges with mobile BI include:

1. Managing standards for rolling out these devices.

2. Managing security (always a big challenge).

3. Managing “bring your own device,” where you have devices both owned by the company and devices owned by

the individual, both contributing to productivity.

b. Write a note on cloud and big data.

The Cloud and Big Data

It is important to remember that for all kinds of reasons—technical, political, social, regulatory, and
cultural—cloud computing has not been a successful business model that has been widely adopted for
enterprises to store their Big Data assets. However, there are many who believe that some obvious industry
verticals will soon realize that there is a huge ROI opportunity if they do embrace the cloud.
As per by Avinash Koushik, Google’s digital marketing evangelist.

“There will be Big Data platforms that companies will build, especially for the core operational system of the world.

Where we continue to have an explosive amount of data come in and because the data is so proprietary that building

out an infrastructure in-house seems logical. I actually think it’s going to go the cloud; it’s just a matter of time! It’s not

value add enough add enough to collect, process and store data”.

 Market economics are demanding that capital-intensive infrastructure costs disappear and business challenges are

forcing clients to consider newer models. At the crossroads of high capital costs and rapidly changing business needs is

a sea change that is driving the need for a new, compelling value proposition that is being manifested in a cloud-

deployment model.

With a cloud model, you pay on a subscription basis with no upfront capi- tal expense. You don’t incur the typical 30

percent maintenance fees—and all the updates on the platform are automatically available. The traditional cost of

value chains is being completely disintermediated by platforms—massively scalable platforms where the marginal cost

to deliver an incremental product or service is zero.

The ability to build massively scalable platforms—platforms where you have the option to keep adding new

products and services for zero additional cost—is giving rise to business models that weren’t possible before. Mehta

calls it “the next industrial revolution, where the raw material is data and data factories replace manufacturing

factories.” He pointed out a few guiding principles that his firm stands by:

1. Stop saying “cloud.” It’s not about the fact that it is virtual, but the true value lies in delivering software, data,

and/or analytics in an “as a service” model. Whether that is in a private hosted model or a publicly shared one

does not matter. The delivery, pricing, and consumption model matters.

2. Acknowledge the business issues. There is no point to make light of matters around information privacy,

security, access, and delivery. These issues are real, more often than not heavily regulated by multiple

government agencies, and unless dealt with in a solution, will kill any platform sell.

3. Fix some core technical gaps. Everything from the ability to run analytics at scale in a virtual environment to

ensuring information processing and analytics authenticity are issues that need solutions and have to be fixed.

4. a. Explain working together of HDFS and Map Reduce

The two critical components of Hadoop are:

The Hadoop Distributed File System (HDFS)
MapReduce

The Hadoop Distributed File System (HDFS): HDFS is the storage system for a Hadoop cluster. When data
lands in the cluster, HDFS breaks it into pieces and distributes those pieces among the different servers
participating in the cluster. Each server stores just a small fragment of the complete data set, and each piece
of data is replicated on more than one server.

MapReduce: Because Hadoop stores the entire dataset in small pieces across a collection of servers, analytical jobs

can be distributed, in parallel, to each of the servers storing part of the data. Each server evaluates the question

against its local fragment simultaneously and reports its results back for collation into a comprehensive answer.

MapReduce is the agent that distributes the work and collects the results.

Both HDFS and MapReduce are designed to continue to work in the face of system failure. HDFS continually

monitors the data stored on the cluster. If a server becomes unavailable, a disk drive fails, or data is damaged,

whether due to hardware or software problems, HDFS automatically restores the data from one of the known good

replicas stored elsewhere on the cluster. Likewise, when an analysis job is running, MapReduce monitors progress of

each of the servers participating in the job. If one of them is slow in returning an answer or fails before completing

its work, MapReduce automatically starts another instance of that task on another server that has a copy of the

data. Because of the way that HDFS and MapReduce work, Hadoop provides scalable, reliable, and fault-tolerant

services for data storage and analysis at very low cost.

b. Define crowd sourcing. Explain different types of crowd sourcing.

Crowdsourcing is a great way to capitalize on the resources that can build algorithms and predictive models

Kaggle: Kaggle describes itself as “an innovative solution for statistical/analytics outsourcing.” That’s a very formal

way of saying that Kaggle manages competitions among the world’s best data scientists. Here’s how it works:

Corporations, governments, and research laboratories are confronted with complex statistical challenges. They

describe the problems to Kaggle and provide data sets. Kaggle converts the problems and the data into contests

that are posted on its web site. The contests feature cash prizes ranging in value from $100 to $3 million. Kaggle’s

clients range in size from tiny start-ups to multinational corporations such as Ford Motor Company and government

agencies such as NASA.

As per Anthony Goldbloom, Kaggle’s founder and CEO: The idea is that someone comes to us with a problem, we

put it up on our website, and then people from all over the world can compete to see who can produce the best

solution.”

 Kaggle’s approach is that it is truly a win-win scenario—contestants get access to real- world data (that has been

carefully “anonymized” to eliminate privacy concerns) and prize sponsors reap the benefits of the contestants’

creativity.Crowdsourcing is a disruptive business model whose roots are in technology but is extending beyond

technology to other areas.

 There are various types of crowd sourcing, such as crowd voting, crowd purchasing, wisdom of crowds, crowd

funding, and contests.

 Take for example:

 99designs.com/, which does crowdsourcing of graphic design

 agentanything.com/, which posts “missions” where agents vie for to run errands

 33needs.com/, which allows people to contribute to charitable programs that make a social

impact

5. a. Compare between Big Data, RDBMS and Grid computing

Grid Computing:

The High Performance Computing (HPC) and Grid Computing communities have been doing large-scale data

processing for years, using such APIs as Message Passing Interface (MPI). Broadly, the approach in HPC is to distribute

the work across a cluster of machines, which access a shared filesystem, hosted by a SAN. This works well for

predominantly compute-intensive jobs, but becomes a problem when nodes need to access larger data volumes

(hundreds of gigabytes, the point at which MapReduce really starts to shine), since the network bandwidth is the

bottleneck and compute nodes become idle.

MapReduce tries to collocate the data with the compute node, so data access is fast since it is local. This feature, known

as data locality, is at the heart of MapReduce and is the reason for its good performance. Recognizing that network

bandwidth is the most precious resource in a data center environment (it is easy to saturate network links by copying

data around), MapReduce implementations go to great lengths to conserve it by explicitly modelling network topology.

Notice that this arrangement does not preclude high-CPU analyses in MapReduce

b. Write a note on i) history of Hadoop ii) Volunteer Computing

History of Hadoop:

 There are many Big Data technologies that have been making an impact on the new technology stacks for

handling Big Data, but Apache Hadoop is one technology that has been the darling of Big Data talk. Hadoop is

an open-source platform for storage and processing of diverse data types that enables data-driven

enterprises to rapidly derive the complete value from all their data.

 The original creators of Hadoop are Doug Cutting and Mike Cafarella. They were building a model called

“Nutch” with the goal of creating a large web index. They integrated the concepts from MapReduce and GFS

into Nutch; then later these two components were pulled out to form the genesis of the Hadoop project.

 The name Hadoop itself comes from the Doug’s son, he just made the word up for a yellow plush elephant

toy that he has. Yahoo! Hired Doug and invested significant resources into growing the Hadoop project,

initially to score and index the web for the purpose of Yahoo! Search.

 Hadoop gives organizations the flexibility to ask questions across their structured and unstructured data that

were previously impossible to ask or solve: The scale and variety of data have permanently overwhelmed the

ability to cost-effectively value using traditional platforms.

 The scalability and elasticity of free, open-source Hadoop running on standard hardware allow organizations

to hold onto more data than ever before. Hadoop excels at supporting complex analyses across large

collection of data.

 Hadoop handle variety of workloads, including search, log processing, recommendation system, data

warehousing and video/image analysis. Today’s explosion of data types and volumes means that Big Data

equals big opportunities and Apache empowers organizations to work on the most modern scale out

architectures.

 Apache Hadoop is an open source project administered by the Apache Software Foundation. The software

was originally developed by the world’s largest internet companies to capture and analyze the data that they

generate.

Volunteer Computing:

Volunteer computing projects work by breaking the problem they are trying to solve into chunks called work units, which
are sent to computers around the world to be analyzed. For example, a SETI@home work unit is about 0.35 MB of radio
telescope data, and takes hours or days to analyze on a typical home computer. When the analysis is completed, the
results are sent back to the server, and the client gets another work unit. As a precaution to combat cheating, each work
unit is sent to three different machines and needs at least two results to agree to be accepted. Although SETI@home
may be superficially similar to Map Reduce

6. a. Illustrate the disabilities of implementing storage and analysis support of big data

b. Explain different Hadoop Versions and releases.

7. a. Briefly explain the anatomy of file write.

The case we’re going to consider is the case of creating a new file, writing data to it,
then closing the file. See Figure 3-4.The client creates the file by calling create() on DistributedFileSystem (step 1 in
Figure 3-4). DistributedFileSystem makes an RPC call to the namenode to create a new file in the filesystem’s
namespace, with no blocks associated with it (step 2). The namenode performs various checks to make sure the file
doesn’t already exist, and that the client has the right permissions to create the file. If these checks pass, the
namenode makes a record of the new file; otherwise, file creation fails and the client is thrown an IOException.

The DistributedFileSystem returns an FSDataOutputStream for the client to start writing data to. Just as in the read
case, FSDataOutputStream wraps a DFSOutput Stream, which handles communication with the datanodes and
namenode.

As the client writes data (step 3), DFSOutputStream splits it into packets, which it writes to an internal queue, called
the data queue. The data queue is consumed by the Data Streamer, whose responsibility it is to ask the namenode to
allocate new blocks by
picking a list of suitable datanodes to store the replicas. The list of datanodes forms a
pipeline—we’ll assume the replication level is three, so there are three nodes in the
pipeline. The DataStreamer streams the packets to the first datanode in the pipeline,
which stores the packet and forwards it to the second datanode in the pipeline. Similarly,the second datanode stores
the packet and forwards it to the third (and last)
datanode in the pipeline (step 4).

b. Explain different HDFS concept in detail.

HDFS concepts:

A disk has a block size, which is the minimum amount of data that it can read or write. Filesystems for a single disk build

on this by dealing with data in blocks, which are an integral multiple of the disk block size. Filesystem blocks are typically

a few kilobytes in size, while disk blocks are normally 512 bytes. This is generally transparent to the filesystem user who

is simply reading or writing a file — of whatever length. However,there are tools to perform filesystem maintenance,

such as df and fsck, that operate on the filesystem block level.

HDFS, too, has the concept of a block, but it is a much larger unit—64 MB by default.Like in a filesystem for a single disk,

files in HDFS are broken into block-sized chunks,which are stored as independent units.

Name nodes and Data nodes:

An HDFS cluster has two types of node operating in a master-worker pattern: a namenode (the master) and a number of

datanodes (workers). The namenode manages the filesystem namespace. It maintains the filesystem tree and the

metadata for all the files and directories in the tree. This information is stored persistently on the local disk in the form

of two files: the namespace image and the edit log. The namenode also knows the datanodes on which all the blocks for

a given file are located, however, it doesnot store block locations persistently, since this information is reconstructed

fromdatanodes when the system starts.

A client accesses the filesystem on behalf of the user by communicating with the namenode and datanodes. The client

presents a POSIX-like filesystem interface, so the user code does not need to know about the namenode and datanode

to function.Datanodes are the workhorses of the filesystem. They store and retrieve blocks when they are told to (by

clients or the namenode), and they report back to the namenode periodically with lists of blocks that they are storing.

8. a. Discuss different file system operations.

The filesystem is ready to be used, and we can do all of the usual filesystem operations
 % hadoop fs -mkdir books

Creates a directory called books on the Hadoop File system. In the above command hadoop

indicates it is a Hadoop command

Fs file system command

-mkdir command to execute on hdfs, ie creation of a directory Books

% hadoop fs -ls .

Found 2 items

drwxr-xr-x - tom supergroup 0 2009-04-02 22:41 /user/tom/books

-rw-r--r-- 1 tom supergroup 118 2009-04-02 22:29 /user/tom/quangle.txt

The information returned is very similar to the Unix command ls -l, with a few minor differences. The first

column shows the file mode. The second column is the replication factor of the file (something a traditional

Unix filesystem does not have). Remember we set the default replication factor in the site-wide configuration

to be 1, which is why we see the same value here. The entry in this column is empty for directories since the

concept of replication does not apply to them—directories are treated as metadata and stored by the

namenode, not the datanodes. The third and fourth columns show the file owner and group. The fifth column

is the size of the file in bytes, or zero for directories. The sixth and seventh columns are the last modified date

and time. Finally, the eighth column is the absolute name of the file or directory.

%hadoop fs -help <<command>>

– to get detailed help on every command.

% hadoop fs -copyFromLocal input/docs/quangle.txt

hdfs://localhost/user/tom/quangle.txt

% hadoop fs -copyFromLocal input/docs/quangle.txt

/user/tom/quangle.txt

% hadoop fs -copyFromLocal input/docs/quangle.txt quangle.txt

– Start by copying a file from the local filesystem to HDFS

% Hadoop fs -copyToLocal hdfs://Buangle.txt c:/input/docs/Buangle.txt

– Start by copying a file from the HDFS to local filesystem

Hadoop FS changing the file permissions Command: chmod

hadoop fs -chmod [-R] <MODE[,MODE]...| OCTALMODE> URI [URI …]

• Change the permissions of files. With -R, make the change recursively through the directory

structure. The user must be the owner of the file, or else a super-user.

% hadoop fs -chmod 744 /user/training/samplezero.txt

b. Define file system interface. Explain different file system interfaces.

File

system

URI

scheme

Java implementation Description

Local file fs.LocalFileSystem A filesystem for a locally

connected disk with clientside

checksums.

HDFS hdfs hdfs.DistributedFileSystem Hadoop’s distributed filesystem.
HDFS is designed to work efficiently
in conjunction with

MapReduce.

HFTP hftp hdfs.HftpFileSystem A filesystem providing read-

only access to HDFS over HTTP.

HSFTP hsftp hdfs.HsftpFileSystem A filesystem providing read-

only access to HDFS over HTTPS.

WebHDFS webhdfs hdfs.web.WebHdfsFileSystem A filesystem providing secure read-
write access to HDFS over HTTP.
WebHDFS is intended as a
replacement

for HFTP and HSFTP.

HAR har fs.HarFileSystem A filesystem layered on another
filesystem for archiving files. Hadoop
Archives are typically used for

archiving files in HDFS to

 reduce the namenode’s

memory usage.

KFS

(Cloud-

Store)

kfs fs.kfs.KosmosFileSystem CloudStore (formerly Kosmos

filesystem) is a distributed filesystem

like HDFS or

Google’s GFS, written in C++.

FTP ftp fs.ftp.FTPFileSystem. A filesystem backed by an FTP server

S3 (native) s3n fs.s3native.NativeS3FileSystem A filesystem backed by Amazon S3.

S3 (block

based)

s3 fs.s3.S3FileSystem A filesystem backed by Amazon S3,
which stores files in blocks (much
like HDFS) to overcome S3’s 5 GB

file size limit.

Distributed

RAID

hdfs hdfs.DistributedRaidFileSystem A “RAID” version of HDFS

designed for archival storage.

View viewfs viewfs.ViewFileSystem A client-side mount table for

other Hadoop filesystems.

9. a. What is Map Reduce? Sketch the neat diagram and explain the logical data flow in

mapreduce.

b. Write a short note on: i) MapReduceUI ii) Hadoop Streaming

Hadoop Streaming:

Hadoop provides an API to MapReduce that allows you to write your map and reduce functions in languages

other than Java. Hadoop Streaming uses Unix standard streams as the interface between Hadoop and your

program, so you can use any language that can read standard input and write to standard output to write your

MapReduce program. Streaming is naturally suited for text processing (although, as of version 0.21.0, it can

handle binary streams, too), and when used in text mode, it has a line-oriented view of data. Map input data is

passed over standard input to your map function, which processes it line by line and writes lines to standard

output. A map output key-value pair is written as a single tab-delimited line. Input to the reduce function is in the

same format—a tab-separated key-value pair—passed over standard input. The reduce function reads lines from

standard input, which the framework guarantees are sorted by key, and writes its results to standard output.

10. a. Write a Java Map Reduce code to find maximum temperature from the weather data set.

b. Write a note on: i) Hadoop logs ii) Remote Debugging

