
 

 

 

 

 

 



Big Data Analytics 

1. a. Define Big Data. 

Big data refers to data that is so large, fast or complex that it's difficult or impossible to process using traditional methods. 
Big data also encompasses a wide variety of data types, including the following: structured data, such as transactions and 
financial records; unstructured data, such as text, documents and multimedia files; and. semi structured data, such as 
web server logs and streaming data from sensors. 

 

b. Explain different characteristics of Big Data Analytics 

Characteristics of Big Data: 
1. Volume 
2. Velocity 
3. Variety 
4. Value 
 
Volume: The main characteristic that makes data “big” is the sheer volume. It makes no sense to focus on minimum 
storage units because the total amount of information is growing exponentially every year. 
Variety: is one the most interesting developments in technology as more and more 
Information is digitized. Traditional data types (structured data) include things on a bank statement like date, amount, 
and time. 
Velocity is the frequency of incoming data that needs to be processed. 
Value: Analysis add value to your business is measured.      

 

c. Write a note on missing values. 

In statistics, missing data, or missing values, occur when no data value is stored for the variable in an observation. Missing 

data are a common occurrence and can have a significant effect on the conclusions that can be drawn from the data. 

2. a. Discuss different types of data source of big data analytics. 

Types of Data Sources. Data can originate from a variety of different sources.  
They are as follows: 
Transactional data 
Unstructured data 
Qualitative/Export based data 
Data poolers 
Publicly available data 
 
Transactional Data: Transactions are the first important source of data. Transactional data consist of structured, low 
level, detailed information capturing the key characteristics of a customer transaction (e.g., purchase, claim, cash 
transfer, credit card payment). This type of data is usually stored in massive online transaction processing (OLTP) 
relational databases. It can also be summarized over longer time horizons by aggregating it into averages, 
absolute/relative trends, maximum/minimum values, and so on. 
 

Unstructured data: Embedded in text documents (e.g., emails, web pages, claim forms) or multimedia content can 
also be interesting to analyze. However, these sources typically require extensive pre-processing before they can be 
successfully included in an analytical exercise. 
 

Qualitative/Expert based data: Another important source of data is qualitative, expert based data. An expert is a 
person with a substantial amount of subject matter expertise within a particular setting (e.g., credit portfolio 
manager, brand manager). The expertise stems from both common sense and business experience, and it is 
important to elicit expertise as much as possible before the analytics is run. This will steer the modelling in 
the   right direction and allow you to interpret the analytical results from the right perspective. A popular example 
of applying expert based validation is checking the univariate signs of a regression model. For example, one would 
expect a priori that higher debt has an adverse. 
Data poolers: Nowadays, data poolers are becoming more and more important in the industry. Popular examples 
are Dun & Bradstreet, Bureau Van Dijck, and Thomson Reuters. The core business of these companies is to gather 



data in a particular setting (e.g., credit risk, marketing), build models with it, and sell the output of these models 
(e.g., scores), possibly together with the underlying raw data, to interested customers. A popular example of this in 
the United States is the FICO score, which is a credit score ranging between 300 and 850 that is provided by the 
three most important credit bureaus: Experian, Equifax, and TransUnion. Many financial institutions use these FICO 
scores either as their final internal model or as a benchmark against an internally developed credit scorecard. 

 

Publicly available data: Finally, plenty of publicly available data can be included in the analytical exercise. A first 
important example is macroeconomic data about gross domestic product (GDP), inflation, unemployment, and so 
on. By including this type of data in an analytical model, it will become possible to see how the model varies with 
the state   of the economy. This is especially relevant in a credit risk setting, where typically all models need to be 
thoroughly stress tested. In addition, social media data from Facebook, Twitter, and others can be an important 
source of information. However, one needs to be careful here and make sure that all data gathering respects both 
local and international privacy regulations. 

 

b. Discuss the applications of big data analytics. 

Analytics is everywhere and strongly embedded in our daily lives. 

The relevance, importance and impact of analytics are now bigger than ever before and, given that more and more 
data are being collected and that there is strategic value in knowing what is hidden in data, analytics will continue 
to grow.  

Physical mail box: a catalogue sent to us through mail most probably as a result of a response modeling analytical 
exercise that indicated, given my characteristics and previous purchase behaviour, we are likely to buy one or more 
products from it.  

Behavioral Scoring Model: Checking account balance of the customer from the past 12 months and credit 
payments during that period, together with other kinds of information available to the  bank, to predict whether a 
customer will default on the loan during the next year. 

Social Media: As we logged on to my Facebook page, the social ads appearing there were based on analyzing all 
information (posts, pictures, my friends and their behaviour, etc.) available to Facebook. Twitter posts will be 
analyzed (possibly in real time) by social media analytics to understand both the subject tweets and the sentiment 
of them. 

    

 

    
 

 

 
 

3. a. Briefly explain mobile intelligence and big data 



Mobile Business Intelligence and Big Data Analytics on mobile devices is what some refer to as putting BI in your pocket. 
Mobile drives straight to the heart of simplicity and ease of use that has been a major barrier to BI adoption since day one.  
 
Kerzner explains his view on this topic:   
They have been working on Mobile BI for a while but the iPad was the inflection point where I think it 
started to become mainstream.  
We have seen customers over the past decade who focused on the mobile space generally and mobile 
applications in particular.  
One client in particular told me that he felt like he was pushing a boulder up a hill until he introduced 
mobility to enhance productivity.  
Once the new smart phones and tablets arrived, his phone was ringing off the hook and he was trying to 
figure out which project to say yes to, because he couldn’t say yes to everyone who suddenly wanted mobile 
analytics in the enterprise. 

Ease of Mobile Application Deployment 

Three elements that have impacted the viability of mobile BI: 
1. Location—the GPS component and location . . . know where you are in time as 

well as the movement. 
2. It’s not just about pushing data; you can transact with your smart phone based on 

information you get. 
3. Multimedia functionality allows the visualization pieces to really come into play. 

 

Three challenges with mobile BI include: 

1. Managing standards for rolling out these devices. 

2. Managing security (always a big challenge). 

3. Managing “bring your own device,” where you have devices both owned by the company and devices owned by 

the individual, both contributing to productivity. 

 

b. Write a note on cloud and big data. 

The Cloud and Big Data 

It is important to remember that for all kinds of reasons—technical, political, social, regulatory, and 
cultural—cloud computing has not been a successful business model that has been widely adopted for 
enterprises to store their Big Data assets. However, there are many who believe that some obvious industry 
verticals will soon realize that there is a huge ROI opportunity if they do embrace the cloud. 
As per by Avinash Koushik, Google’s digital marketing evangelist. 

“There will be Big Data platforms that companies will build, especially for the core operational system of the world. 

Where we continue to have an explosive amount of data come in and because the data is so proprietary that building 

out an infrastructure in-house seems logical. I actually think it’s going to go the cloud; it’s just a matter of time! It’s not 

value add enough add enough to collect, process and store data”. 

 Market economics are demanding that capital-intensive infrastructure costs disappear and business  challenges are 

forcing clients to consider newer models. At the crossroads of high capital costs and rapidly changing business needs is 

a sea change that is driving the need for a new, compelling value proposition that is being manifested in a cloud-

deployment model. 

With a cloud model, you pay on a subscription basis with no upfront capi- tal expense. You don’t incur the typical 30 

percent maintenance fees—and all the updates on the platform are automatically available. The traditional cost of 

value chains is being completely disintermediated by platforms—massively scalable platforms where the marginal cost 

to deliver an incremental product or service is zero. 

The ability to build massively scalable platforms—platforms where you have the option to keep adding new 

products and services for zero additional cost—is giving rise to business models that weren’t possible before. Mehta 

calls it “the next industrial revolution, where the raw material is data and data factories replace manufacturing 

factories.” He pointed out a few guiding principles that his firm stands by: 



1. Stop saying “cloud.” It’s not about the fact that it is virtual, but the true value lies in delivering software, data, 

and/or analytics in an “as a service” model. Whether that is in a private hosted model or a publicly shared one 

does not matter. The delivery, pricing, and consumption model matters. 

2. Acknowledge the business issues. There is no point to make light of matters around information privacy, 

security, access, and delivery. These issues are real, more often than not heavily regulated by multiple 

government agencies, and unless dealt with in a solution, will kill any platform sell. 

3. Fix some core technical gaps. Everything from the ability to run analytics at scale in a virtual environment to 

ensuring information processing and analytics authenticity are issues that need solutions and have to be fixed. 

4. a. Explain working together of HDFS and Map Reduce 

The two critical components of Hadoop are: 

The Hadoop Distributed File System (HDFS) 
MapReduce 

 
The Hadoop Distributed File System (HDFS): HDFS is the storage system for a Hadoop cluster. When data 
lands in the cluster, HDFS breaks it into pieces and distributes those pieces among the different servers 
participating in the cluster. Each server stores just a small fragment of the complete data set, and each piece 
of data is replicated on more than one server. 

 

 

 

MapReduce: Because Hadoop stores the entire dataset in small pieces across a collection of servers, analytical jobs 

can be distributed, in parallel, to each of the servers storing part of the data. Each server evaluates the question 

against its local fragment simultaneously and reports its results back for collation into a comprehensive answer. 

MapReduce is the agent that distributes the work and collects the results. 

 



Both HDFS and MapReduce are designed to continue to work in the face of system failure. HDFS continually 

monitors the data stored on the cluster. If a server becomes unavailable, a disk drive fails, or data is damaged, 

whether due to hardware or software problems, HDFS automatically restores the data from one of the known good 

replicas stored elsewhere on the cluster. Likewise, when an analysis job is running, MapReduce monitors progress of 

each of the servers participating in the job. If one of them is slow in returning an answer or fails before completing 

its work, MapReduce automatically starts another instance of that task on another server that has a copy of the 

data. Because of the way that HDFS and MapReduce work, Hadoop provides scalable, reliable, and fault-tolerant 

services for data storage and analysis at very low cost. 

b. Define crowd sourcing. Explain different types of crowd sourcing. 

Crowdsourcing is a great way to capitalize on the resources that can build algorithms and predictive models 

Kaggle: Kaggle describes itself as “an innovative solution for statistical/analytics outsourcing.” That’s a very formal 

way of saying that Kaggle manages competitions among the world’s best data scientists. Here’s how it works: 

Corporations, governments, and research laboratories are confronted with complex statistical challenges. They 

describe the problems to Kaggle and provide data sets. Kaggle converts the problems and the data into contests 

that are posted on its web site. The contests feature cash prizes ranging in value from $100 to $3 million. Kaggle’s 

clients range  in size from tiny start-ups to multinational corporations such as Ford Motor Company and government 

agencies such as NASA.  

As per Anthony Goldbloom, Kaggle’s founder and CEO: The  idea is that someone comes to us with a problem, we 

put it up on our website, and then people from all over the world can compete to see who can produce the best 

solution.” 

 Kaggle’s approach is that it is truly a win-win scenario—contestants get access to real-     world data (that has been 

carefully “anonymized” to eliminate privacy concerns) and prize     sponsors reap the benefits of the contestants’ 

creativity.Crowdsourcing is a disruptive business model whose roots are in technology but is  extending beyond 

technology to other  areas.  

     There are various types of crowd sourcing, such as crowd voting, crowd purchasing,  wisdom of crowds, crowd 

funding, and contests.  

  Take for example: 

 99designs.com/, which does crowdsourcing of graphic design 

 agentanything.com/, which posts “missions” where agents vie for to run errands 

 33needs.com/, which allows people to contribute to charitable programs that make a social 

impact 

 

 

 

 

 

 

 

 

 



5. a. Compare between Big Data, RDBMS and Grid computing 

 

 
 

Grid Computing: 

 
The High Performance Computing (HPC) and Grid Computing communities have been doing large-scale data 

processing for years, using such APIs as Message Passing Interface (MPI). Broadly, the approach in HPC is to distribute 

the work across a cluster of machines, which access a shared filesystem, hosted by a SAN. This works well for 

predominantly compute-intensive jobs, but becomes a problem when nodes need to access larger data volumes 

(hundreds of gigabytes, the point at which MapReduce really starts to shine), since the network bandwidth is the 

bottleneck and compute nodes become idle. 

 
MapReduce tries to collocate the data with the compute node, so data access is fast since it is local. This feature, known 

as data locality, is at the heart of MapReduce and is the reason for its good performance. Recognizing that network 

bandwidth is the most precious resource in a data center environment (it is easy to saturate network links by copying 

data around), MapReduce implementations go to great lengths to conserve it by explicitly modelling network topology. 

Notice that this arrangement does not preclude high-CPU analyses in MapReduce 

 

b. Write a note on i) history of Hadoop ii) Volunteer Computing 

History of Hadoop: 

 There are many Big Data technologies that have been making an impact on the new technology   stacks for 

handling Big Data, but Apache Hadoop is one technology that has been the darling of Big Data talk. Hadoop is 

an open-source platform for storage and processing of diverse data types that enables data-driven 

enterprises to rapidly derive the complete value from all their data. 

 The original creators of Hadoop are Doug Cutting and Mike Cafarella. They were building a model called 

“Nutch” with the goal of creating a large web index. They integrated the concepts from MapReduce and GFS 

into Nutch; then later these two components were pulled out to form the genesis of the Hadoop project. 

 The name Hadoop itself comes from the Doug’s son, he just made the word up for a yellow plush elephant 

toy that he has. Yahoo! Hired Doug and invested significant resources into growing the Hadoop project, 

initially to score and index the web for the purpose of Yahoo! Search. 

 Hadoop gives organizations the flexibility to ask questions across their structured and unstructured data that 

were previously impossible to ask or solve: The scale and variety of data have permanently overwhelmed the 

ability to cost-effectively value using traditional platforms. 



 The scalability and elasticity of free, open-source Hadoop running on standard hardware allow organizations 

to hold onto more data than ever before. Hadoop excels at supporting complex analyses across large 

collection of data. 

 Hadoop handle variety of workloads, including search, log processing, recommendation system, data 

warehousing and video/image analysis. Today’s explosion of data types and volumes means that Big Data 

equals big opportunities and Apache empowers organizations to work on the most modern scale out 

architectures. 

 Apache Hadoop is an open source project administered by the Apache Software Foundation. The software 

was originally developed by the world’s largest internet companies to capture and analyze the data that they 

generate. 

 

Volunteer Computing: 

Volunteer computing projects work by breaking the problem they are trying to solve into chunks called work units, which 
are sent to computers around the world to be analyzed. For example, a SETI@home work unit is about 0.35 MB of radio 
telescope data, and takes hours or days to analyze on a typical home computer. When the analysis is completed, the 
results are sent back to the server, and the client gets another work unit. As a precaution to combat cheating, each work 
unit is sent to three different machines and needs at least two results to agree to be accepted. Although SETI@home 
may be superficially similar to Map Reduce 

 

6. a. Illustrate the disabilities of implementing storage and analysis support of big data 

 

 
 

 



b. Explain different Hadoop Versions and releases. 

 
7. a. Briefly explain the anatomy of file write. 

The case we’re going to consider is the case of creating a new file, writing data to it, 
then closing the file. See Figure 3-4.The client creates the file by calling create() on DistributedFileSystem (step 1 in 
Figure 3-4). DistributedFileSystem makes an RPC call to the namenode to create a new file in the filesystem’s 
namespace, with no blocks associated with it (step 2). The namenode performs various checks to make sure the file 
doesn’t already exist, and that the client has the right permissions to create the file. If these checks pass, the 
namenode makes a record of the new file; otherwise, file creation fails and the client is thrown an IOException.  
 
The DistributedFileSystem returns an FSDataOutputStream for the client to start writing data to. Just as in the read 
case, FSDataOutputStream wraps a DFSOutput Stream, which handles communication with the datanodes and 
namenode. 
 
As the client writes data (step 3), DFSOutputStream splits it into packets, which it writes to an internal queue, called 
the data queue. The data queue is consumed by the Data Streamer, whose responsibility it is to ask the namenode to 
allocate new blocks by 
picking a list of suitable datanodes to store the replicas. The list of datanodes forms a 
pipeline—we’ll assume the replication level is three, so there are three nodes in the 
pipeline. The DataStreamer streams the packets to the first datanode in the pipeline, 
which stores the packet and forwards it to the second datanode in the pipeline. Similarly,the second datanode stores 
the packet and forwards it to the third (and last) 
datanode in the pipeline (step 4). 
 

 

 

 

 



b. Explain different HDFS concept in detail. 

HDFS concepts: 

 
A disk has a block size, which is the minimum amount of data that it can read or write. Filesystems for a single disk build 

on this by dealing with data in blocks, which are an integral multiple of the disk block size. Filesystem blocks are typically 

a few kilobytes in size, while disk blocks are normally 512 bytes. This is generally transparent to the filesystem user who 

is simply reading or writing a file — of whatever length. However,there are tools to perform filesystem maintenance, 

such as df and fsck, that operate on the filesystem block level. 

HDFS, too, has the concept of a block, but it is a much larger unit—64 MB by default.Like in a filesystem for a single disk, 

files in HDFS are broken into block-sized chunks,which are stored as independent units. 

 
Name nodes and Data nodes: 

 
An HDFS cluster has two types of node operating in a master-worker pattern: a namenode (the master) and a number of 

datanodes (workers). The namenode manages the filesystem namespace. It maintains the filesystem tree and the 

metadata for all the files and directories in the tree. This information is stored persistently on the local disk in the form 

of two files: the namespace image and the edit log. The namenode also knows the datanodes on which all the blocks for 

a given file are located, however, it doesnot store block locations persistently, since this information is reconstructed 

fromdatanodes when the system starts. 

 
A client accesses the filesystem on behalf of the user by communicating with the namenode and datanodes. The client 

presents a POSIX-like filesystem interface, so the user code does not need to know about the namenode and datanode 

to function.Datanodes are the workhorses of the filesystem. They store and retrieve blocks when they are told to (by 

clients or the namenode), and they report back to the namenode periodically with lists of blocks that they are storing. 

 

8. a. Discuss different file system operations. 

The filesystem is ready to be used, and we can do all of the usual filesystem operations 
           %  hadoop  fs  -mkdir  books 

Creates a directory called books on the Hadoop File system. In the above command hadoop 

indicates it is a Hadoop command  

Fs  file system command 

-mkdir  command to execute on hdfs, ie creation of a directory Books 
 
 
%  hadoop  fs  -ls  . 

Found  2  items 

drwxr-xr-x  -  tom  supergroup  0  2009-04-02  22:41  /user/tom/books 

-rw-r--r--  1  tom  supergroup  118  2009-04-02  22:29  /user/tom/quangle.txt 
 

 
The information returned is very similar to the Unix command ls -l, with a few minor differences. The first 

column shows the file mode. The second column is the replication factor of the file (something a traditional 

Unix filesystem does not have). Remember we set the default replication factor in the site-wide configuration 

to be 1, which is why we see the same value here. The entry in this column is empty for directories since the 

concept of replication does not apply to them—directories are treated as metadata and stored by the 

namenode, not the datanodes. The third and fourth columns show the file owner and group. The  fifth column 

is the size of the file in bytes, or zero for directories. The sixth and seventh columns are the last modified date 

and time. Finally, the eighth column is the absolute name of the file or  directory. 

 



%hadoop  fs  -help  <<command>> 

– to get detailed help on every command. 
 
 

%  hadoop  fs  -copyFromLocal  input/docs/quangle.txt 

hdfs://localhost/user/tom/quangle.txt 

%  hadoop  fs  -copyFromLocal  input/docs/quangle.txt 

/user/tom/quangle.txt 

%  hadoop  fs  -copyFromLocal  input/docs/quangle.txt  quangle.txt 

– Start by copying a file from the local filesystem to HDFS 

%  Hadoop  fs  -copyToLocal  hdfs://Buangle.txt  c:/input/docs/Buangle.txt 

– Start by copying a file from the HDFS to local filesystem 

Hadoop FS changing the file permissions Command: chmod 

hadoop  fs  -chmod  [-R]  <MODE[,MODE]...|  OCTALMODE>  URI  [URI  …] 

• Change the permissions of files. With -R, make the change recursively through the directory 

structure. The user must be the owner of the file, or else a super-user. 

%  hadoop  fs  -chmod  744  /user/training/samplezero.txt 
 

b. Define file system interface. Explain different file system interfaces. 

File 

system 

URI 

scheme 

Java implementation Description 

Local file fs.LocalFileSystem A filesystem for a locally 

connected disk with clientside 

checksums. 

HDFS hdfs hdfs.DistributedFileSystem Hadoop’s distributed filesystem. 
HDFS is designed to work efficiently 
in conjunction with 

MapReduce. 

HFTP hftp hdfs.HftpFileSystem A filesystem providing read- 

only access to HDFS over HTTP. 

HSFTP hsftp hdfs.HsftpFileSystem A filesystem providing read- 

only access to HDFS over HTTPS. 

WebHDFS webhdfs hdfs.web.WebHdfsFileSystem A filesystem providing secure read-
write access to HDFS over HTTP. 
WebHDFS is intended as a 
replacement 

for HFTP and HSFTP. 

HAR har fs.HarFileSystem A filesystem layered on another 
filesystem for archiving files. Hadoop 
Archives are typically used for 

archiving    files    in    HDFS to 



   reduce the namenode’s 

memory usage. 

KFS 

(Cloud- 

Store) 

kfs fs.kfs.KosmosFileSystem CloudStore (formerly Kosmos 

filesystem) is a distributed filesystem 

like HDFS or 

Google’s GFS, written in C++. 

FTP ftp fs.ftp.FTPFileSystem. A filesystem backed by an FTP server 

S3 (native) s3n fs.s3native.NativeS3FileSystem A filesystem backed by Amazon S3. 

S3 (block 

based) 

s3 fs.s3.S3FileSystem A filesystem backed by Amazon S3, 
which  stores files in blocks (much 
like HDFS) to overcome S3’s 5 GB 

file size limit. 

Distributed 

RAID 

hdfs hdfs.DistributedRaidFileSystem A “RAID” version of HDFS 

designed for archival storage. 

View viewfs viewfs.ViewFileSystem A client-side mount table for 

other Hadoop filesystems. 

 

9. a. What is Map Reduce? Sketch the neat diagram and explain the logical data flow in 

mapreduce. 

 

 



 
b. Write a short note on: i) MapReduceUI ii) Hadoop Streaming 

 



 
Hadoop Streaming: 

 
Hadoop provides an API to MapReduce that allows you to write your map and reduce functions in languages 

other than Java. Hadoop Streaming uses Unix standard streams as the interface between Hadoop and your 

program, so you can use any language that can read standard input and write to standard output to write your 

MapReduce program. Streaming is naturally suited for text processing (although, as of version 0.21.0, it can 

handle binary streams, too), and when used in text mode, it has a line-oriented view of data. Map input data is 

passed over standard input to your map function, which processes it line by line and writes lines to standard 

output. A map output key-value pair is written as a single tab-delimited line. Input to the reduce function is in the 

same format—a tab-separated key-value pair—passed over standard input. The reduce function reads lines from 

standard input, which the framework guarantees are sorted by key, and writes its results to standard output. 

 

10. a. Write a Java Map Reduce code to find maximum temperature from the weather data set. 



 
 

 



 

 

 

 

 

 

b. Write a note on: i) Hadoop logs ii) Remote Debugging 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


