


 

 

 

 



1.a 

Well-Posed Learning Definition: A computer program is said to learn from experience E with respect to some 

class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with 

experience E.  

Examples:  

Checkers Game: A computer program that learns to play checkers might improve its performance as measured 

by its ability to win at the class of tasks involving playing checkers game, through experience obtained by 

playing games against itself:  

checkers learning problem:  

Task T: playing checkers  

 

Performance measure P: percent of games won against opponents  

 

Training experience E: playing practice games against itself  

 

A handwriting recognition learning problem:  

Task T: recognizing and classifying handwritten words within images  

 

Performance measure P: percent of words correctly classified  

 

Training experience E: a database of handwritten words with given classifications  

 

A robot driving learning problem:  

Task T: driving on public four-lane highways using vision sensors  

 

Performance measure P: average distance travelled before an error (as judged by human overseer)  

 

Training experience E: a sequence of images and steering commands recorded while observing a human driver  

 

1.b. 

DESIGNING A LEARNING SYSTEM  

The basic design issues and approaches to machine learning are illustrated by designing a program to learn to 

play checkers, with the goal of entering it in the world checkers tournament  

1. Choosing the Training Experience  

 

2. Choosing the Target Function  

 

3. Choosing a Function Approximation Algorithm  

 

1. Estimating training values  

 

2. Adjusting the weights  

 

1. Choosing the Training Experience  

 

The first design choice is to choose the type of training experience from which the  

 
system will learn.  

 

The type of training experience available can have a significant impact on success or failure of the learner.  

 

There are three attributes which impact on success or failure of the learner  

1. Whether the training experience provides direct or indirect feedback regarding the choices made by the 

performance system.  

 

For example, in checkers game:  



In learning to play checkers, the system might learn from direct training examples consisting of individual 

checkers board states and the correct move for each.  

Indirect training examples consisting of the move sequences and final outcomes of various games played. The 

information about the correctness of specific moves early in the game must be inferred indirectly from the fact 

that the game was eventually won or lost.  

Here the learner faces an additional problem of credit assignment, or determining the degree to which each 

move in the sequence deserves credit or blame for the final outcome.  

2. The degree to which the learner controls the sequence of training examples  

 

For example, in checkers game:  

The learner might depends on the teacher to select informative board states and to provide the correct move for 

each.  

Alternatively, the learner might itself propose board states that it finds particularly confusing and ask the teacher 

for the correct move.  

The learner may have complete control over both the board states and (indirect) training classifications, as it 

does when it learns by playing against itself with no teacher present.  

3. How well it represents the distribution of examples over which the final system performance P must be 

measured  

 

For example, in checkers game:  

In checkers learning scenario, the performance metric P is the percent of games the system wins in the world 

tournament.  

If its training experience E consists only of games played against itself, there is a danger that this training 

experience might not be fully representative of the distribution of situations over which it will later be tested.  

It is necessary to learn from a distribution of examples that is different from those on which the final system will 

be evaluated.  

2. Choosing the Target Function  

 

The next design choice is to determine exactly what type of knowledge will be learned and how this will be used 

by the performance program.  

Let’s consider a checkers-playing program that can generate the legal moves from any board state.  

The program needs only to learn how to choose the best move from among these legal moves. We must learn 

to choose among the legal moves, the most obvious choice for the type of information to be learned is a 

program, or function, that chooses the best move for any given board state.  

1. Let ChooseMove be the target function and the notation is  

ChooseMove : B→ M  

which indicate that this function accepts as input any board from the set of legal board states B and produces as 

output some move from the set of legal moves M.  

ChooseMove is a choice for the target function in checkers example, but this function will turn out to be very 

difficult to learn given the kind of indirect training experience available to our system  

2. An alternative target function is an evaluation function that assigns a numerical score to any given board 

state  

 

Let the target function V and the notation  

V:B →R  

which denote that V maps any legal board state from the set B to some real value. Intend for this target function 

V to assign higher scores to better board states. If the system can successfully learn such a target function V, 

then it can easily use it to select the best move from any current board position.  

Let us define the target value V(b) for an arbitrary board state b in B, as follows:  

If b is a final board state that is won, then V(b) = 100  

 

If b is a final board state that is lost, then V(b) = -100  

 

If b is a final board state that is drawn, then V(b) = 0  

 

If b is a not a final state in the game, then V(b) = V(b' ),  

 

Where b' is the best final board state that can be achieved starting from b and playing optimally until the end of 

the game  



3. Choosing a Function Approximation Algorithm  

 

In order to learn the target function f we require a set of training examples, each describing a specific board state 

b and the training value Vtrain(b) for b.  

Each training example is an ordered pair of the form (b, Vtrain(b)).  

For instance, the following training example describes a board state b in which black has won the game (note x2 

= 0 indicates that red has no remaining pieces) and for which the target function value Vtrain(b) is therefore 

+100.  

((x1=3, x2=0, x3=1, x4=0, x5=0, x6=0), +100)  

Function Approximation Procedure  

1. Derive training examples from the indirect training experience available to the learner  

 

2. Adjusts the weights wi to best fit these training examples  

 

1. Estimating training values  

 

A simple approach for estimating training values for intermediate board states is to assign the training value of 

Vtrain(b) for any intermediate board state b to be V(Successor(b))  

Where ,  

V is the learner's current approximation to V  

Successor(b) denotes the next board state following b for which it is again the  

Rule for estimating training values  

Vtrain(b) ← V (Successor(b))  

2. Adjusting the weights  

 

Specify the learning algorithm for choosing the weights wi to best fit the set of training examples {(b, 

Vtrain(b))}  

A first step is to define what we mean by the bestfit to the training data.  

One common approach is to define the best hypothesis, or set of weights, as that which minimizes the squared 

error E between the training values and the values predicted by the hypothesis.  

Several algorithms are known for finding weights of a linear function that minimize E. One such algorithm is 

called the least mean squares, or LMS training rule. For each observed training example it adjusts the weights 

a small amount in the direction that reduces the error on this training example  

LMS weight update rule :- For each training example (b, Vtrain(b))  

Use the current weights to calculate V (b)  

For each weight wi, update it as  

wi ← wi + ƞ (Vtrain (b) - V(b)) xi  

 

Here ƞ is a small constant (e.g., 0.1) that moderates the size of the weight update. 

Working of weight update rule  
  

 When the error (Vtrain(b)- V(b)) is zero, no weights are changed.    

 When (Vtrain(b) - V(b)) is positive (i.e., when V(b) is too low), then each weight    

 

2.a 

Answer: FIND-S Algorithm 

1. Initialize h to the most specific hypothesis in H  
2. For each positive training instance x 
 

For each attribute constraint ai in h 
 

If the constraint ai is satisfied by x 
 

Then do nothing 
 

Else replace ai in h by the next more general constraint that is satisfied by x 3. Output 

hypothesis h 

 

Unanswered by FIND-S 



1. Has the learner converged to the correct target concept?  
2. Why prefer the most specific hypothesis?  
3. Are the training examples consistent?  
4. What if there are several maximally specific consistent hypotheses? 

 

1. Consider the given below following training example.  

Example Sky AirTemp Humidity Wind Water Forecast EnjoySport 

1 Sunny Warm Normal Strong Warm Same Yes 

2 Sunny Warm High Strong Warm Same Yes 

3 Rainy Cold High Strong Warm Change No 

4 Sunny Warm High Strong Cool Change Yes 

Show the general and specific boundaries of the version space after applying candidate elimination algorithm. 

Answer: CANDIDATE-ELIMINTION algorithm begins by initializing the version space to the set of all 

hypotheses in H; 

Initializing the G boundary set to contain the most general hypothesis in H                        

G0 (?, ?, ?, ?,?,?) 

 

Initializing the S boundary set to contain the most specific (least general) hypothesis                              

S0 (Ф, Ф , Ф, Ф, Ф, Ф) 

 

 

 

When the second training example is observed, it has a similar effect of generalizing S further to S2, leaving G 

again unchanged i.e., G2 = G1 = G0 



 

 

Consider the third training example 

 

 

Consider the fourth training example 

 



After processing these four examples, the boundary sets S4 and G4 delimit the version space of all 

hypotheses consistent with the set of incrementally observed training examples. 

 

 

2.b. 

What is Concept Learning…? 

“A task of acquiring potential(best) hypothesis (solution) that best fits the  given training 

examples.” 

 

 

 

 

 

 

 

• For each attribute, the hypothesis will either 

– indicate by a "?' that any value is acceptable for this attribute, 

– specify a single required value (e.g., Warm) for the attribute, or 

– indicate by a "ø" that no value is acceptable. 



• General hypothesis-that every day is a positive     (?, ?, ?, ?, ?, ?) 

• Specific possible hypothesis-that no day is a positive (ø, ø, ø, ø, ø, ø) 

 

Instance Space: 

• Consider, for example, the instances X and hypotheses

 H in the EnjoySport learning task. 

• Given that  the attribute sky has three possible values  and that AirTemp,  

Humidity, Wind, Water, and Forecast each have two possible 

values, the instance space X contains exactly 3 . 2 . 2 . 2 . 2 . 2 = 96 distinct instances. 

 

 

 

 

 

 

 

3.a. 

DECISION TREE REPRESENTATION 

 Decision trees classify instances by sorting them down the tree from the root to some leaf node, which 

provides the classification of the instance. 
 

 Each node in the tree specifies a test of some attribute of the instance, and  

each branch descending from that node corresponds to one of the possible values for this attribute. 

 

An instance is classified by starting at the root node of the tree, testing the attribute specified by this node, 

then moving down the tree branch corresponding to the value of the attribute in the given example. This 

process is then repeated for the subtree rooted at the new node. 

Example:- 

Let’s say we have a sample of 50 students with three variables Gender (Boy/ Girl), Class( X/ XI) and Height (5 to 

6 ft). 20 out of these 50 play cricket in rest time. Suppose you want to find on unknown dataset which contains all 

the features(Gender, class, height) that he/she will play or not in rest time. 

The number of semantically distinct hypothesis is only 1 + (4 . 3 . 3 . 3 . 3 . 3) =973 



This is where decision tree supports, it will separate the students based on all values of three variable and identify 

the variable, which creates the best uniform sets of students. 

Entropy 

  

Entropy is a measure of the randomness in the information being processed. The higher the entropy, the harder it 

is to draw any conclusions from that information. Flipping a coin is an example of an action that provides 

information that is random. 

 

From the above graph, it is quite evident that the entropy H(X) is zero when the probability is either 0 or 1. The 

Entropy is maximum when the probability is 0.5 because it projects perfect randomness in the data and there is 

no chance if perfectly determining the outcome. 

ID3 follows the rule — A branch with an entropy of zero is a leaf node and A brach with entropy more 

than zero needs further splitting. 

Mathematically Entropy for 1 attribute is represented as: 

 

Information Gain 

  

Information gain or IG is a statistical property that measures how well a given attribute separates the training 

examples according to their target classification. Constructing a decision tree is all about finding an attribute that 

returns the highest information gain and the smallest entropy. 

 



       

 

Information gain is a decrease in entropy. It computes the difference between entropy before split and average 

entropy after split of the dataset based on given attribute values. ID3 (Iterative Dichotomiser) decision tree 

algorithm uses information gain. 

Mathematically, IG is represented as: 

 

3.b Summarize the practical issues of decision tree learning. 

Answer: 

Issues in learning decision trees include 
 

1 Avoiding Overfitting the Data  

2 Reduced error pruning  

3 Rule post-pruning 

4 Incorporating Continuous-Valued Attributes 

5 Alternative Measures for Selecting Attributes 

6 Handling Training Examples with Missing Attribute Values 

7 Handling Attributes with Differing Costs 
 

 Avoiding Overfitting the Data 
 

The ID3 algorithm grows each branch of the tree just deeply enough to perfectly classify the training examples 

but it can lead to difficulties when there is noise in the data, or when the number of training examples is too small 

to produce a representative sample of the true target function. This algorithm can produce trees that overfit the 

training examples. 

How can it be possible for tree h to fit the training examples better than h', but for it to perform more poorly over 

subsequent examples?  
Overfitting can occur when the training examples contain random errors or noise  
When small numbers of examples are associated with leaf nodes. 
 

Approaches to avoiding overfitting in decision tree learning 
 

8 Pre-pruning (avoidance): Stop growing the tree earlier, before it reaches the point where it perfectly 

classifies the training data  
9 Post-pruning (recovery): Allow the tree to overfit the data, and then post-prune the tree 

 

Criterion used to determine the correct final tree size 
 

10 Use a separate set of examples, distinct from the training examples, to evaluate the utility of post-pruning 

nodes from the tree 
 



11 Use all the available data for training, but apply a statistical test to estimate whether expanding (or 

pruning) a particular node is likely to produce an improvement beyond the training set 
 

12 Use measure of the complexity for encoding the training examples and the decision tree, halting growth 

of the tree when this encoding size is minimized. This approach is called the Minimum Description 

Length 

MDL – Minimize : size(tree) + size (misclassifications(tree)) 

Reduced-Error Pruning 
 

13 Reduced-error pruning, is to consider each of the decision nodes in the tree to be candidates for pruning 
 

14 Pruning a decision node consists of removing the subtree rooted at that node, making it a leaf node, and 

assigning it the most common classification of the training examples affiliated with that node 
 

15 Nodes are removed only if the resulting pruned tree performs no worse than-the original over the 

validation set. 
 

16 Reduced error pruning has the effect that any leaf node added due to coincidental regularities in the 

training set is likely to be pruned because these same coincidences are unlikely to occur in the validation 

set 

 

2. Incorporating Continuous-Valued Attributes 

 

Continuous-valued decision attributes can be incorporated into the learned tree. 

 

There are two methods for Handling Continuous Attributes 
 
17 Define new discrete valued attributes that partition the continuous attribute value into a discrete set of 

intervals.  
E.g., {high ≡ Temp > 35º C, med ≡ 10º C < Temp ≤ 35º C, low ≡ Temp ≤ 10º C} 

 

18 Using thresholds for splitting nodes  
e.g., A ≤ a produces subsets A ≤ a and A > a 

What threshold-based Boolean attribute should be defined based on Temperature? 

 
19 Pick a threshold, c, that produces the greatest information gain 

20 In the current example, there are two candidate thresholds, corresponding to the values of Temperature 

at which the value of PlayTennis changes: (48 + 60)/2, and (80 + 90)/2. 

21 The information gain can then be computed for each of the candidate attributes, Temperature >54, and 

Temperature >85 and the best can be selected (Temperature >54) 

 

1. Alternative Measures for Selecting Attributes 

• The problem is if attributes with many values, Gain will select it ? 

• Example: consider the attribute Date, which has a very large number of possible values. (e.g., March 4, 

1979). 

• If this attribute is added to the PlayTennis data, it would have the highest information gain of any of the 

attributes. This is because Date alone perfectly predicts the target attribute over the training data. Thus, 

it would be selected as the decision attribute for the root node of the tree and lead to a tree of depth one, 

which perfectly classifies the training data. 

• This decision tree with root node Date is not a useful predictor because it perfectly separates the training 

data, but poorly predict on subsequent examples. 

 

2. Handling Training Examples with Missing Attribute Values 
 
 



The data which is available may contain missing values for some attributes Example: 

Medical diagnosis  
 <Fever = true, Blood-Pressure = normal, …, Blood-Test = ?, …>  
 Sometimes values truly unknown, sometimes low priority (or cost too high) 

 

Strategies for dealing with the missing attribute value 
 

 If node n test A, assign most common value of A among other training examples sorted to node 

n  
 Assign most common value of A among other training examples with same target value 

 
 Assign a probability pi to each of the possible values vi of A rather than simply assigning the 

most common value to A(x) 

5. Handling Attributes with Differing Costs 

 

 In some learning tasks the instance attributes may have associated costs. 
 

 For example: In learning to classify medical diseases, the patients described in terms of 

attributes such as Temperature, BiopsyResult, Pulse, BloodTestResults, etc. 
 

 These attributes vary significantly in their costs, both in terms of monetary cost and cost to 

patient comfort 
 

Decision trees use low-cost attributes where possible, depends only on high-cost attributes only when needed 

to produce reliable classifications. 

4.a 

 Draw decision tree for the given dataset and calculate the entropy and information gain. 

 

  

 

 

 

 

 

 

 

Instance Classification a1 a2 

1 + T T 

2 + T T 

3 - T F 

4 + F F 

5 - F T 

6 - F T 



 

 



 

4.b.  

 Avoiding Overfitting the Data 
 
The ID3 algorithm grows each branch of the tree just deeply enough to perfectly classify the training 

examples but it can lead to difficulties when there is noise in the data, or when the number of training 

examples is too small to produce a representative sample of the true target function. This algorithm can 

produce trees that overfit the training examples. 

How can it be possible for tree h to fit the training examples better than h', but for it to perform more poorly 

over subsequent examples?  
Overfitting can occur when the training examples contain random errors or noise  
When small numbers of examples are associated with leaf nodes. 
 

Approaches to avoiding overfitting in decision tree learning 
 

Pre-pruning (avoidance): Stop growing the tree earlier, before it reaches the point where it 

perfectly classifies the training data  
Post-pruning (recovery): Allow the tree to overfit the data, and then post-prune the tree 

 

5.a  

Appropriate Problems for ANN 

• training data is noisy, complex sensor data 
• also problems where symbolic algos are used (decision tree learning (DTL)) - ANN 

and DTL produce results of comparable accuracy 
• instances are attribute-value pairs, attributes may be highly correlated or 

independent, values can be any real value 
• target function may be discrete-valued, real-valued or a vector 
• training examples may contain errors 
• long training times are acceptable 
• requires fast eval. of learned target func. 
• humans do NOT need to understand the learned target func. 



Instances have many attribute-value pairs: The target function to be learned is defined over 

instances that can be described by a vector of predefined features. 

Target function output may be discrete-valued, real-valued, or a vector of several real- or 

discrete-valued attributes 

Training examples may contain errors: ANN learning methods are quite robust to noise in the 

training data. 

Long training times are acceptable: Network training algorithms typically require longer 

training times than, say, decision tree learning algorithms. Training times can range from a 

few seconds to many hours, depending on factors such as the number of weights in the 

network, the number of training examples considered, and the settings of various learning 

algorithm parameters. 

Fast evaluation of the learned target function may be required. Although ANN learning times 

are relatively long, evaluating the learned network, in order to apply it to a subsequent 

instance, is typically very fast. 

 

5.b 

Representational Power of Perceptrons: 

 The perceptron can be viewed as representing a hyperplane decision surface in the n- 

dimensional space of instances (i.e., points) 

 The perceptron outputs a 1 for instances lying on one side of the hyperplane and outputs 

a -1 for instances lying on the other side, as illustrated in below figure 

 

 

6.a  



 

 

 

6.b 



Write the Gradient decent Algorithm and visualize the Hypothesis space for gradient decent rule. 

 

• Perceptron learning converges to a consistent model  if D (training set) is linearly separable. 

• If the data is not linearly separable than this will not converge.  

• If the training examples are not linearly separable, the delta rule converges toward a 

best-fit approximation to the target concept. 

• The key idea behind the delta rule is to use gradient descent to search the hypothesis 

space of possible weight vectors to find the weights that best fit the training examples. 

 

 
• Gradient descent search determines a weight vector that minimizes E by starting with an 

arbitrary initial weight vector, then repeatedly modifying it in small steps. 

• At each step, the weight vector is altered in the direction that produces the steepest 

descent along the error surface depicted in above figure. This process continues until 

the global minimum error is reached. 
 



7.a 

Brute-Force Bayes Concept Learning 

 

Consider the concept learning problem 

 

 Assume the learner considers some finite hypothesis space H defined over the instance space X, in which the task 

is to learn some target concept c : X → {0,1}. 
 

 Learner is given some sequence of training examples ((x1, d1) . . . (xm, dm)) where xi is some instance from X 

and where di is the target value of xi (i.e., di = c(xi)).  

 The sequence of target values are written as D = (d1 . . . dm). 
 

 

We can design a straightforward concept learning algorithm to output the maximum a posteriori hypothesis, based on 

Bayes theorem, as follows: 

8.a 

BRUTE-FORCE MAP LEARNING algorithm: 

 

 

In order specify a learning problem for the BRUTE-FORCE MAP LEARNING algorithm we must specify what values are 

to be used for P(h) and for P(D|h) ? 

 

Let’s choose P(h) and for P(D|h) to be consistent with the following assumptions: 

 

 The training data D is noise free (i.e., di = c(xi))  

 The target concept c is contained in the hypothesis space H 
 

Do not have a priori reason to believe that any hypothesis is more probable than any other. 



 

 

 

To summarize, Bayes theorem implies that the posterior probability P(h|D) under our assumed P(h) and P(D|h) is 



 

 

8.b 

 

 

 

 

 

 

 

 

 

 

 

 

• Given these assumptions,  

• Given no prior knowledge that one hypothesis is more likely than another, it is  reasonable 

to assign the same prior probability to every hypothesis h in H. 

 

 

 

 

 

 

 

• This algorithm may require significant computation, because it applies Bayes  theorem to each hypothesis in H 

to calculate P(h|D ) . 

– The algorithm is still of interest because it provides a standard against which  we may judge the performance 

of other concept learning algorithms. 

– While this is impractical for large hypothesis spaces,  

• Brute Force MAP learning algorithm must specify values for P(h) and P(D|h). 
• P(h) and P(D|h) must be chosen to be consistent with the assumptions: 

1. The training data D is noise free. 
2. The target concept c is contained in the hypothesis space H.  
3. We have no a priori reason to believe that any hypothesis is more probable than 

any other. 

• P(D|h) is the probability of observing the target values D = <d1 . . .dm> for the  fixed set of instances <X1 . . . Xm>. 



 

 

• Given these choices for P(h) and for P(D|h) we now have a fully-defined problem for 

the above BRUTE-FORCE MAP LEARNING agorithm. 

• Let us consider the first step of this algorithm, which uses Bayes theorem to compute  the 

posterior probability P(h|D) of each hypothesis h given the observed training  data D. 

 

 

 

 

 

 

  

 

classification di given h is just 1 if di = h(xi) and 0 if di != h(xi). 

• Therefore, 



 

 

10.a 

Hypothesis Testing 

• Evaluates 2 mutual exclusive statement on population using sample data. 

• Steps: 

 1. Make initial Assumptions 

 2. Collect Data 

 3. Gather Evidence to Reject or accept NULL hypothesis 

• What is the probability that  

             error D(h1)   > error D(h2) 

 

COMPARING LEARNING ALGORITHMS 

•  Comparing the performance of 2 learning algorithms LA and LB. 

• A reasonable way to define “on average” is to consider the relative performance of these 2 algorithms 

averaged over all the training  sets of size n over Distribution D. 

 

 

Where , 

L(S) : Hypothesis output of learning method L when given  the sample  S of training data . 

Here S ϲ D : The expected value  is taken over  samples S drawn according to the underlying instance 

distribution D. 



 

 

Paired t Tests 

Following is the estimation procedure: 

• We are given the observed values of a set of independent, identically distributed random variables Y1, 

Y2, ….Yk. 

• We wish to estimate the mean of the probability distribution governing these Yi. 

• The estimator  will use sample mean  which is given by 

                               

 

• We can request a new training examples drawn according to the underlying instance distribution. 

Modify  the steps on each  iteration  through  the loop it generates a new random training set Si and a 

new random test set Ti by drawing from this underlying instance distribution instead of drawing from 

the fixed sample D0. 

 

10.b  

Discuss Q-learning algorithm with the help of an example. 

Answer: 

The value of Evaluation function Q(s, a) is the reward received immediately upon executing action a from state 

s, plus the value (discounted by γ ) of following the optimal policy thereafter 

 

 

Rewrite Equation (3) in terms of Q(s, a) as 



 

 

 

Equation (5) makes clear, it need only consider each available action a in its current state s and choose the action 

that maximizes Q(s, a). 

 

An Algorithm for Learning Q 

 

1. Learning the Q function corresponds to learning the optimal policy. 
 

The key problem is finding a reliable way to estimate training values for Q, given only a sequence of immediate 

rewards r spread out over time. This can be accomplished through iterative approximation 

         

 

Rewriting Equation 

 

 

Q learning algorithm 

 

 

 



 

 

 

 

Next Step is to associate reward value to each door. 

 

 

 

 

  Next Step is to create Q  matrix. 



 

 

Q-Learning Example: 

 

 

 

 

 

 


