

18ELD11

First Semester M.Tech. Degree Examination, July/August 2022 Advanced Engineering Mathematics

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. If a, b, c are fixed elements of a field F, then shown that the Set W of all ordered triads (x, y, z) of elements of F, such that ax+by+cz=0 is a subspace of $V_3(F)$. (08 Marks)
 - b. If w_1 and w_2 are subspaces of a vector space V(F), then prove that $w_1 + w_2$ is also a subspace of V(F). (12 Marks)

OF

2 a. Prove that a mapping $T: U \rightarrow V$ from a vector space U(F) into a vector space V(F) is a linear transformation if and only if $T(C_1\alpha + C_2\beta) = C_1T(\alpha) + C_2T(\beta) \ \forall C_1, C_2 \in F \text{ and } \alpha, \beta \in U$.

(08 Marks)

b. Let T be a linear transformation on R^3 defined by T(x,y,z) = (3x+z,-2x+y,-x+2y+4z). Find the matrix T of the linear transformation in the ordered basis $\{\alpha_1,\alpha_2,\alpha_3\}$, where $\alpha_1 = \{1,0,1\}$, $\alpha_2 = \{-1,2,1\}$, $\alpha_3 = \{2,1,1\}$. (12 Marks)

Module-2

- 3 a. If $S = \{u_1, u_2, u_3, \dots, u_p\}$ is an orthogonal set of non zero vectors in R^n . Prove that S is linearly independent and hence is a basis for the subspace spanned by S. (08 Marks)
 - b. Use Given's method to find eigen values of the matrix, $\begin{pmatrix} 1 & 2 & -2 \\ 2 & 1 & 2 \\ -2 & 2 & 1 \end{pmatrix}$. (12 Marks)

OR

CMRIT LIBRARY BANGALORE - 560 037

- 4 a. Use Gram-Schmidt orthogonalization process to construct an orthogonal basis for R^4 . Given $V_1 = (1, 1, 1, 1), V_2 = (1, 1, 1, 0), V_3 = (1, 1, 0, 0), V_4 = (1, 0, 0, 0)$ (12 Marks)
 - b. Let $S = \{u_1, u_2, u_3\}$ where $u_1 = \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix}$, $u_2 = \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}$ and $u_3 = \begin{pmatrix} -\frac{1}{2} \\ -2 \\ \frac{7}{2} \end{pmatrix}$. Show that S is an

orthogonal set and Express $Y = \begin{pmatrix} 6 \\ 1 \\ -8 \end{pmatrix}$ as a linear combination of the vectors in S.

(08 Marks)

Module-3

- Show that the equation of the curve joining the points (1, 0) and (2, 1) for which $I = \int_{\mathbf{v}}^{2} \frac{\sqrt{1 + (y')^{2}}}{\mathbf{v}} dx$ is an extremum is a circle. (12 Marks)
 - Show that the curve which extremizes the functional $\int_{0}^{2} \left[(y'')^{2} y^{2} + x^{2} \right] dx$ under the conditions y(0) = 1, y'(0) = 0, $y\left(\frac{\pi}{2}\right) = 0$, $y'\left(\frac{\pi}{2}\right) = -1$ is $y = \cos x$. (08 Marks)

- a. Find the function y(x) for which $\int_0^{\pi} \{(y')^2 y^2\} dx$ is stationary. Given that $\int_0^{\pi} y dx = 1$ and $y(0) = 0, y(\pi) = 1.$ (08 Marks)
 - Find the extremals of $I = \int_{0}^{1} [2yz 2y^{2} + (y')^{2} (z')^{2}] dx$, given that y(0) = 0, y(1) = 1, z(0) = 0, z(1) = 1. (12 Marks)

Module-4

- Define moment generating function for discrete and a continuous random variable. 7 A random variable X has the following p.d.f $f(x) = \begin{cases} e^{-x}, & x \ge 0 \\ 0, & \text{elsewhere} \end{cases}$. Determine the moment generating function and also the first four moments about the origin. (08 Marks)
 - A random variable X has the following probability distribution:

X	-2	1	0	1	2	3	4	
P(x)	0.1	K	0.2	2K	0.3	3K	CMRIT LIBRARY	
Find K	, P(x	< 2),	P(-2	< x <	(2), c	df of	I mean of x. BANGALORE - 560 037	(12 Marks)

- The number of accidents in a year to taxi drivers in a city follows a Poisson distribution with mean 3. Out of 1000 taxi drivers find approximately the number of drivers with
 - No accidents in a year.
 - (08 Marks) (ii) More than 3 accidents in a year.
 - b. In an engineering examination a student is considered to have failed, secured second class, first class and distinction according as he scores less than 45%, between 45% and 60%, between 60% and 75% and above 75% respectively. In a particular year 10% of the students failed in the examination and 5% of the students got distinction. Find the percentage of the students who have got First and Second class. Given $\phi(1.28) = 0.4$, $\phi(1.64) = 0.45$, $\phi(0.18) = 0.0714$. (12 Marks)

Module-5

- 9 a. If $\{X(t)\}$ is a wide-sense stationary process with auto correlation $R(\tau) = Ae^{-\alpha|\tau|}$. Determine the second order moment of the random variable X(8) X(5). (08 Marks)
 - b. Define stationary process, wide sense stationary process and Ergodic process. Given that the auto correlation function for a stationary Ergodic process with no periodic components is

$$R_{XX} = 25 + \frac{4}{1 + 6\tau^2}$$
.

Find mean and variance of the process $\{X(t)\}$.

CMRIT LIBRARY BANGALORE - 560 037 (12 Marks)

OR

- 10 a. Define Gaussian process. Consider a random process $X(t) = (A\cos\omega t + B\sin\omega t)$ where A and B are Gaussian random variables with zero mean and variance σ^2 . Find the mean and variance of this process. (08 Marks)
 - b. If X(t) is a Gaussian process with $\mu(t) = 10$, $C(t_1, t_2) = 16e^{-|t_1 t_2|}$. Find the probability that (i) $X(10) \le 8$ (ii) $|X(10) - X(6)| \le 4$. Given that $\phi(0.71) = 0.2611$, $\phi(0.5) = 0.1915$.

(12 Marks)