Time: 3 hrs.

First/Second Semester B.E. Degree Examination, July/August 2022 **Basic Electronics**

Max. Marks: 100

17ELN15/25

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- Explain the V-I characteristics of p-n junction diode. (08 Marks) 1
 - With neat circuit diagram and waveform explain the working of full wave bridge rectifier. (08 Marks)
 - Derive the relationship between α and β . Also calculate the α value and β value of a transistor. If $I_{\beta} = 100 \mu A$ and $I_{C} = 2mA$. (04 Marks)

- With a neat diagram, explain the Input-Output characteristics of a transistor in common base 2 (08 Marks)
 - With neat circuit diagram and waveforms, explain the working of a half-wave rectifier. b.

(08 Marks)

Explain briefly capacitor filter circuit.

(04 Marks)

(06 Marks)

Module-2

- Explain the characteristic of Ideal operational amplifier. (06 Marks) 3
 - What is DC load line? Explain with neat circuit the operation of voltage divider bias circuit. b. (08 Marks)
 - Derive the output expression of Op-Amp differentiator.

Calculate the output voltage of a three input inverting summing amplifier, given $R_1 = 200 K\Omega$, $R_2 = 250 K\Omega$, $R_3 = 500 K\Omega$, $R_f = 1 M\Omega$, $V_1 = -2 V$, $V_2 = -1 V$ and $V_3 = +3 V$.

For the circuit shown in Fig.Q.4(b) find the Q-point values and draw DC-load line, where (06 Marks) $V_{BE} = 0.7V \text{ and } \beta = 50.$

Fig.Q.4(b)

Explain briefly inverting and non-inverting operational amplifiers.

(08 Marks)

Module-3

		iviodute-3	
5	a.	Convert:	
		i) $(1101101)_2 = (?)_{10}$ and $(101.01)_2 = (?)_{10}$	
		ii) $(48350)_{10} = (?)_{16} = (?)_8$	
		iii) $(FA876)_{16} = (?)_8 = (?)_{10}$	
		iv) $(237)_8 = (?)_{16} = (?)_{10}$.	(08 Marks)
	b.	Perform the subtraction:	
		i) $(22-17)_{10}$ by using 1's complement.	
		ii) $(11010)_2 - (10000)_2$ by using 2's complement.	(04 Marks)
	c.	State and prove De-Morgan's theorems.	(08 Marks)
		OR	
6	a.	Explain the full adder circuit with circuit diagram, truth table.	(05 Marks)
	b.	What are universal gates? Realize AND and OR gates using NAND gates.	(05 Marks)
	C.	Simplify: $y = \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD}$.	(05 Marks)
	d.	Draw and explain half adder circuit.	(05 Marks)
	ч.	Blan and orpidin national oxers.	,
		Module-4	
7	a.	Explain the operation of NOR Latch with symbol, circuit diagram and truth table.	(06 Marks)
	b.	Explain with neat block diagram architecture of 8051 microcontroller.	(08 Marks)
	C.	Explain the working of clocked RS-flip flop using NAND-gates.	(06 Marks)
		OR CMRIT LIBRARY	
8	a.	Write a note on NAND-gate latch. BANGALORE - 560 037	(06 Marks)
	b.	With the help of block diagram, explain the microcontroller based stopper mo	tor control
		system.	(08 Marks)
	c.	Explain R-S flip-flop with diagram and truth table.	(06 Marks)
		Module-5	
9	a.	With the help of block diagram, explain the communication system.	(06 Marks)
	b.	Define Modulation. Derive mathematical expression for amplitude modular	tion, draw
		waveforms.	(06 Marks)
	c.	Explain the construction and working principle of LVDT.	(08 Marks)
		OR	
10	a.	A carrier of 1MHz, with 400W of its power is amplitude modulated with a sinusc	
	A	of 2500Hz. The depth of modulation is 75%. Calculate the side band frequency, I	
		the power in the side bands and the total power in the modulated wave.	(06 Marks)
	b.	List the differences between Amplitude Modulation and frequency modulation.	(06 Marks)
	d.	Explain the piezoelectric transducer and photo electric transducer.	(08 Marks)

* * * * *