

17CS32

hird Semester B.E. Degree Examination, July/August 2022 **Analog and Digital Electronics**

GANGALORE Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- What is junction field effect transistor differentiate between JFET and MOS FET. (10 Marks) 1
 - Explain the working principle of mulitivibrotor IC 555 with neat diagram. (10 Marks)

- Compare ideal opamp and practical opamp and explain opamp performance parameters. 2
 - (10 Marks) Explain voltage to current and current to converter with neat diagram. (10 Marks)

Module-2

- What are universal gets? Implement the universal gates using basic gates. (06 Marks)
 - b. Implement the following function using only NAND gates (A + B)CD(06 Marks)

- Final SOP and POS for the following function and design
 - i) SOP using only NAND gates
 - ii) POS using only NOR gates.
 - $Y = F(A, B, C, D) = \Sigma m(6, 8, 9, 10, 11, 12, 13, 14, 15).$

(08 Marks)

- Simplify the following equation using Quine-McClusky method:
 - $Y = F(A, B, C) = \Sigma m(2, 6, 7).$

(06 Marks)

- b. Simplify using K map and find SOP
 - $Y = F(A, B, C, D) = \Sigma m(0) + \Sigma_d(8, 9, 10, 11, 14, 15).$

(06 Marks) (08 Marks)

Explain different types of hazards and hazard covers with example.

Module-3

What is Multiplexer? Design a 16-to-1 Mux using two 8-to-Mux and one 2-to-7 Mux.

(06 Marks)

Implement the following functions using 3:8 decoder and an OR gate (multi input)

 $F_1(A, B, C) = \Sigma m(0, 4, 6), F_2(A, B, C) = \Sigma m(0, 5), F_3(A, B, C) = \Sigma m(1, 2, 3, 7).$ (06 Marks)

Write a note on parity generator and charters.

(08 Marks)

(08 Marks)

OR

- Design BCD to Seven segment decoder using PLA. (08 Marks)
 - Explain different types of flip flops with neat diagram. b.
 - Write a HDL code to perform the operations of 4 to 1 multiplexer. (04 Marks)

Module-4

- (10 Marks) Explain JK master – slave flip – flop with neat diagram. 7
 - Write characteristic equation, finite state machine and excitation table of different types of (10 Marks) flip – flops.

OR

8	a.	What are the different types of shift registers? Explain with neat diagram.	(10 Marks)
	b.	Explain ring counter with neat circuit diagram.	(06 Marks)
	c.	Compare synchronous and asynchronous counters.	(04 Marks)
		Module-5	
9	a.	Design Mod 8 synchronous counter using JK – FF.	(10 Marks)
	b.	Explain different methods used to convert analog to digital conversion.	(10 Marks)
		OR	
10	a.	Write R – IR ladder network working with explanation.	(10 Marks)
	b.	Write short notes on:	
		i) D/A converters	
		ii) D/A accuracy and resolution.	(10 Marks)