

17EE45

Fourth Semester B.E. Degree Examination, July/August 2022

Electromagnetic Field Theory

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Define a scalars and vectors. For a given vectors.

$$\vec{A} = 6\vec{a}_x + 2\vec{a}_y + 6\vec{a}_z$$
 and $\vec{B} = -2\vec{a}_x + 9\vec{a}_y - \vec{a}_z$

- i) Show that vectors \vec{A} and \vec{B} are perpendicular to each other.
- ii) Find $\vec{A} \times \vec{B}$ and show $\vec{A} \times \vec{B} = -\vec{B} \times \vec{A}$.

(08 Marks)

- b. Derive the relationship between rectangular and spherical coordinates. (06 Marks)
- c. Using surface integral obtain an expression for surface area of a sphere of radius "r₁" meter.

 (06 Marks)

OR

- 2 a. State and explain Coulomb's law in vector form. Mention the units involved in it. (07 Marks)
 - b. State and prove Gauss law.

(07 Marks)

c. If $\vec{D} = 2xy \vec{a}_x + 3yz \vec{a}_y + 4zx \vec{a}_z c/m^2$, how much electric flux passes through that portion of the plane at x = 3m for which $-1 \le y \le 2m$ and $0 \le z \le 4m$. (06 Marks)

Module-2

- 3 a. Show that the electric field intensity is equal to the gradient of a potential. (07 Marks)
 - b. Determine the workdone in carrying a charge of 2C from B(1, 0, 1) to A(0.8, 0.6, 1) in an electric field $\vec{E} = y\vec{a}_x + x\vec{a}_y + 2\vec{a}_z$ v/m along the short arc of circle $x^2 + y^2 = 1$, z = 1.

(07 Marks)

c. Derive the expression for potential due to a point charge.

(06 Marks)

OR

4 a. With usual notations prove that

$$\nabla . \vec{J} = -\frac{\partial \rho v}{\partial t}$$

(07 Marks)

- b. Obtain the boundary conditions between conductor and free space.
- (08 Marks)
- c. A parallel plate capacitor of 8nF has an area of 1.51m² and separation of 10mm. What separation would be required to obtain the 10nF capacitance between the plates? (05 Marks)

Module-3

5 a. Derive Poisson's and Laplace's equation.

(06 Marks)

b. State and explain uniqueness theorem.

- (08 Marks)
- c. Verify that the potential field given below satisfies the Laplace's equation.

OR

- 6 a. Derive an expression for magnetic field intensity at a point due to an infinite long straight conductor carrying a current of I amperes along Z-axis. (10 Marks)
 - b. Evaluate both sides of the Stoke's theorem for the field $\vec{H} = 6xy \vec{a}_x 3y^2 \vec{a}_y$ A/m and the rectangular path around the region, $2 \le x \le 5$, $-1 \le y \le 1$, z = 0. Let the positive direction of ds be \vec{a}_z . (10 Marks)

Module-4

- 7 a. Derive an expression for the force between differential current elements. (07 Marks)
 - b. Find the expression for force and torque on a closed circuit. (06 Marks)
 - c. A point charge Q = 18nC has a velocity of 5×10^6 m/s in the direction $\vec{a}_v = 0.6\vec{a}_x + 0.75\vec{a}_y + -0.3\vec{a}_z$. Calculate the magnitude of the force exerted on the charge by the field
 - i) $\vec{E} = -3\vec{a}_x + 4\vec{a}_y + 6\vec{a}_z KV/m$.
 - ii) $\vec{B} = -3a_x + 4\vec{a}_y + 6\vec{a}_z \text{ mT}.$
 - iii) \vec{B} and \vec{E} acting together.

CMRIT LIBRARY
BANGALORE - 560 037

(07 Marks)

OR

8 a. Obtain the magnetic boundary conditions.

(10 Marks)

b. Calculate the inductance of a solenoid of 200 turns wound tightly on a cylindrical tube of length 60cm and of diameter 6cm, given that medium is air. Derive the expression used.

(10 Marks)

Module-5

9 a. Write Maxwell's equations in point form and in integral form for time varying fields.

(10 Marks)

b. A circular loop of 10cm radius is located in x-y plane with magnetic field. $\vec{B} = 0.5 \cos(377t)[3\vec{a}_x + 4\vec{a}_z]T$. Calculate voltage induced in a loop. (10 Marks)

OR

- 10 a. Starting from Maxwell's equations obtain the general wave equations in electric and magnetic fields. (10 Marks)
 - b. The magnetic field intensity of uniform plane wave in air is 20A/m in \vec{a}_y direction. The wave is propagating in the \vec{a}_z direction at an angular frequency of 2×10^9 rad/sec. Find:
 - i) Phase shift constant
 - ii) Wavelength
 - iii) Frequency
 - iv) Amplitude of electric field intensity.

(10 Marks)

* * * * *