
Time: 3 hrs

18EE45

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Electromagnetic Field Theory

Module-1

- 1 a. Define Scalar and Vector, for a given two vectors:
 - $\overline{A} = 2a_x 5a_y 4a_z$ and $\overline{B} = 3a_x + 5a_y + 2a_z$, solve to find the Dot product and angle between two vectors. (08 Marks)
 - b. Obtain the relationship between Rectangular and Cylindrical coordinates. (06 Marks)
 - c. Construct the Cartesian component of the vector,

 $H = 20a_r - 10a_b + 3a_z$ at P(x = 5, y = 2, z = -1). (06 Marks)

OR

- 2 a. State and explain the Coulomb's law. (06 Marks)
 - b. Define Electric Field Intensity at a point. Derive an expression for field intensity due to infinite line charge. (08 Marks)
 - c. State and prove Gauss's law.

Module-2

3 a. Show that Electric Field intensity is expressed as Negative Gradient of Scalar Potential.

b. Calculate the potential at the centre of a square with a side a=2 mtr, while charges 2 μ C, -4μ C, 6μ C and 2μ C are located at its 4 corners. (06 Marks)

c. Define Electric dipole. Obtain the expression for potential and electric field intensity due to a dipole. (06 Marks)

OR

- 4 a. Derive the boundary conditions between a conductor and dielectric. (08 Marks)
 - b. Derive the continuity of current equation.

(06 Marks)

(06 Marks)

c. Obtain the expression for energy stored in a capacitor.

(06 Marks)

Module-3

- 5 a. Derive the Poisson's and Laplace equations from Gauss law in point form in all the three co-ordinate system. (08 Marks)
 - b. State and explain Biot-Savart law and Ampere's circuital law. (08 Marks)
 - c. Solve to find the current density, given : $\overline{H} = (3y z)\overline{a_x} + 2x\overline{a_y}$ A/m. (04 Marks)

OR

- 6 a. State and prove the Stoke's theorem. (08 Marks)
 - b. Verify the potential field, given satisfies the Laplace's equation, $V = r\cos\phi + z$. (06 Marks)
 - c. Derive the equation for point form of Ampere's law. (06 Marks)

Module-4 Derive an expression for force between two conductors carrying current in opposite A current element 4 cm long is along y-axis with a current of 10 mA flowing in y-direction. b. Determine the force on the current element due to the magnetic field, if $\overline{H} = \frac{5}{a_x} A/M$. (06 Marks) (06 Marks) State and explain Lorentz force equation Derive the boundary conditions at the interface between two magnetic materials of different permeabilities. (06 Marks) Derive an expression for inductance of solenoid. Given a ferrite material which will operate in a linear mode with B = 0.05 Tesla. Let (06 Marks) $\mu_r = 50$. Calculate values of X_m , M and H. Module-5 BANGALORE - 560 037 (06 Marks) State and explain Faraday's law. What are the drawbacks of Ampere's law? Hence derive an expression for modified a b. ampere's law. Write Maxwell's equation in point form and integral form of time varying fields. (06 Marks) State and explain Poynting's theory with derivation $\overrightarrow{P} = \overrightarrow{E} \times \overrightarrow{H}$. (08 Marks) 10 The magnetic field intensity of uniform plane wave in air is 20 A/m in â, direction. The wave is propagating in \hat{a}_z direction at an angular frequency of 2×10^9 rad/sec. Find Phase shift constant. (i) Wavelength. (ii) (06 Marks) Frequency. (iii) (06 Marks) Briefly explain the skin effect in conductors.