

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

a. Determine the Output voltage waveform for the circuit shown below in Fig. Q1(a):

(06 Marks)

Fig.Q1(a)

b. Sketch the Output waveform for the following input.

(07 Marks)

c. For the circuit shown in Fig. Q1(c), find i) I_C ii) V_{CC} iii) β iv) R_B . Assume $V_{BE} = 0.7V$. Given $I_B = 20\mu A$ and $I_C = 4mA$. (07 Marks)

OF

2 a. Describe the operation of a transistor as a bistable switch.

(05 Marks)

(07 Marks)

b. Derive an expression for stability factor for a fixed bias circuit for the following:

i) $S(V_{BE})$ ii) $S(\beta)$ iii) $S(I_{CO})$

c. Derive an expression for a voltage divider bias circuit:

i) I_B ii) V_B , using exact analysis. (08 Marks)

Module-2

- 3 a. Derive an expression for i) Input impedance (Zi) ii) Output impedance (Zo)
 - iii) Voltage gain (AV) iv) Current gain (Ai) for common emitter fixed bias configuration using hybrid π model. (10 Marks)
 - b. A voltage source of negligible internal reactance driver a common collector transistor amplifier. The load resistance is 2500 Ω . The transistor h parameter are $h_{ic}=1000~\Omega$, $h_{rc}=1$, $h_{fc}=-50$, $h_{oc}=25~\mu\text{A/v}$. Compute Ai, Av, Zi and Zo (10 Marks)

OR

4 a. Derive an expression to verify Miller effect capacitance.

(10 Marks)

b. Derive an expression for i) Z_i ii) Z_o iii) A_V iv) A_i for a collector feedback configuration. (10 Marks)

Module-3

- 5 a. For the BJT cascade amplifier shown below in Fig. Q5(a):
 - i) Calculate the DC bias voltages and collector current for each stage.
 - ii) Calculate the Voltage gain of each stage, the overall voltage gain and the output voltage.
 - iii) Repeat part (ii) with a load of 10k Ω load applied to the 2nd stage.
 - iv) Calculate the input impedance of the 1st stage and the output impedance of the 2nd stage. Take $\beta = 200$ for both transistor.

(10 Marks)

- b. For the cascaded arrangement shown in Fig Q5(b), calculate:
 - i) The loaded voltage gain of each stage
 - ii) The total gain of the system A_V and A_{V1}

CMRIT LIBRARY BANGALORE - 560 037

iii) The loaded current gain of each stage

iv) The total current gain of the system.

Fig Q5(b)

(10 Marks)

OR

- 6 a. With a neat diagram, explain 4 different feedback amplifier topologies. (08 Marks)
 - b. Define the general characteristics of negative feedback amplifier with appropriate mathematical formulations. (04 Marks)
 - c. An amplifier has a open loop voltage gain $A = 1000 \pm 100$. It is required to have an amplifier whose voltage gain varies by no more than $\pm 0.1\%$.
 - i) Find the reverse transmission factor β of feedback network used.
 - ii) Find the gain g with feedback.

(08 Marks)

Module-4

- 7 a. Explain the classification of power amplifiers, with a neat waveform. (08 Marks)
 - b. Derive an expression for output power (Poac) for a transformer coupled class A power amplifier with relevant waveforms. (12 Marks)

OR

- 8 a. A crystal has the following parameters L=0.334H , C=0.065~pF ; Cm=1~pF ; $R=5.5k\Omega$.
 - i) Calculate the series resonant frequency,
 - ii) Calculate the parallel resonant frequency.
 - iii) By what % does the parallel resonant frequency exceed the series resonant frequency?
 - iv) Find the Q of the crystal.

CMRIT LIBRARY (10 Marks)

BANGALORE - 560 037

- b. Derive an expression for:
 - i) Frequency of oscillation.
 - ii) Conditions for sustained oscillations for a Wein Bridge oscillator.

(10 Marks)

Module-5

- 9 a. Explain the construction and characteristics of JFET's, with a neat diagram and characteristic waveform. (13 Marks)
 - b. Briefly explain the Transfer characteristics of a JFET, with suitable equations. (07 Marks)

OR

- a. Explain the construction and characteristics of enhancement type MOSFET with relevant waveforms and appropriate diagram. (14 Marks)
 - b. Derive an expression to show the relationship between I_D and g_m. (06 Marks)

* * * * *