

17EE35

Third Semester B.E. Degree Examination, July/August 2022 **Digital Systems Design**

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- Define combinational logic. With the help of block diagram explain combinational logic 1 (04 Marks) circuit.
 - b. Simplify the Boolean function using K-map.
 - i) $f(a, b, c, d) = \Sigma m(6, 7, 9, 10, 13) + d(1, 4, 5, 11, 15)$
 - ii) $f(a, b, c, d) = \pi M(1, 2, 3, 4, 9, 10) + d(0, 14, 15)$. (08 Marks)
 - Express the following functions into canonical form:
 - i) $f_1 = ab + ab + bc$

Lither 3 thrs.

ii)
$$f_2 = (a + \overline{b})(\overline{b} + c)$$
. (08 Marks)

Reduce the function using K-map technique. 2

$$f(a, b, c, d, e) = \Sigma m(1, 4, 8, 10, 11, 20, 22, 24, 25, 26) + d(10, 12, 16, 17).$$
 (10 Marks)

b. Simplify using Quine - McClusky's minimization technique

$$f(a, b, c, d) = \Sigma m(1, 5, 7, 9, 13, 15) + \Sigma d(8, 10, 11, 14).$$
 (10 Marks)

- Design and implement BCD to Excess 3 code converter. (10 Marks) 3 a.
 - Implement full subtractor using a decoder and write a truth table. (06 Marks)
 - With the help of general structure, distinguish between a decoder and encoder. (04 Marks)

OR

Realize the following Boolean function:

$$f(a, b, c, d) = \Sigma(0, 1, 3, 5, 7) \text{ using } : i) 8 : 1 \text{ Mux}$$
 ii) 4 : 1 Mux. (08 Marks)

- Design a 1-bit comparator using 2:4 decoder giving three outputs G, E and L. (04 Marks) b.
- Explain look ahead carry adder. (08 Marks)

Module-3

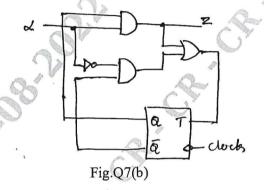
- Explain the working of Master Slave JK flip-flop with functional table and timing diagram. 5 (08 Marks) Also brief about race – around condition.
 - Obtain characteristic equation of: i) SR flipflop ii) JK flipflop iii) T – Flip-Flop. b.

(08 Marks)

C. Explain the operation of SR - latch act as switch debouncer with help of the timing diagram. (04 Marks)

OR

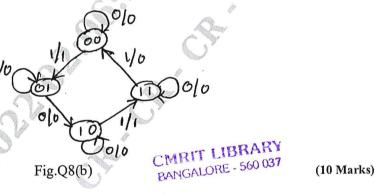
Compare between Synchronous and asynchronous circuits.


(04 Marks)

- Explain with suitable logic and timing diagram:
 - i) Serial in Serial out shift register
 - ii) Parallel in Parallel out unidirectional shift register.

(08 Marks)

c. Explain working of 3 – bit binary ripple counter with the suitable logic and timing diagram. (08 Marks) Module-4


- 7 a. With the help of block diagram, explain Mealy and Moore model in a sequential circuit analysis. Give the example. (10 Marks)
 - b. Analyze the following sequential logic circuit as shown in Fig.Q7(b). Obtain the excitation and output equation, transition table and state table. Also draw the state diagram.

(10 Marks)

OR

- 8 a. Design synchronous mod-6 counter using D flip-flop to generate the sequence (0, 2, 3, 6, 5, 1, 0, - -). (10 Marks)
 - b. Design a clocked sequential circuit that operates according to the state diagram shown in Fig.Q8(b). Implement the circuit using D-flip-flop.

Module-5

	Explain various data types of VHDL.	(08 Marks)
b.	Write the HDL code for half – adder – VHDL.	(06 Marks)
	Write the comparison between VHDL and verilog.	(06 Marks)

OR

10	a.	Explain brief history of HDL and structure of HDL module.	(06 Marks)
	b.	Explain signal declaration in VHDL and assignment statement with example.	(06 Marks)
	c.	Write the HDL code for a D – latch in VHDL and verilog.	(08 Marks)
