15EC32

hird Semester B.E. Degree Examination, July/August 2022 **Analog Electronics**

Max. Marks: 80

Timen's hes Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

Draw the emitter follower circuit. Derive the expressions for 1

iii) Av. Using re model.

(08 Marks)

Draw re and h-parameter models of a transistor in common-emitter configuration. Also give relation between re and h-parameters. (08 Marks)

OR

Derive expression for Z_i, Z₀, A_v and A_I for common -emitter fixed bias configuration using 2 (08 Marks) hybrid equivalent model.

b.

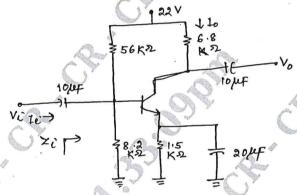


Fig Q2(b)

For the circuit shown determine: i) -r_e ii) $-Z_i$ iii) Z_0 ($r_0 = \infty \Omega$) iv) A_v ($r_0 = \infty \Omega$).

(08 Marks)

Module-

Explain with neat diagram the construction and characteristics of a depletion type MOSFET. 3 How a depletion type MOSFET is different than an enhancement type of MOSFET.

(08 Marks)

Derive expression for Z_i, Z₀ and A_v for the JFET common-source amplifier fixed bias (08 Marks) configuration. Suing ac equivalent circuit.

Draw JFET common drain configuration circuit. Derive Zi, Zo and Av using small signal (08 Marks) model.

b. A dc analysis of the source follower network of Fig Q4(b) results in $V_{GSQ} = -2.86V$ and $I_{DQ} = 4.56mA$. Determine: i) -gm ii) -r_d iii) -Z_i iv) Z_0 with and without r_d v) A_v with and without r_d.

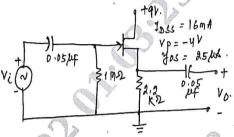


Fig Q4(b)

(08 Marks)

Module-3

5 a. Explain the low frequency response of BJT amplifier and give expression for low frequency due to I/P coupling capacitor C_s and output coupling capacitor C_c with neat diagram.

(08 Marks)

b Describe Miller-effect. Derive an equation for Miller input and output capacitance. (08 Marks)

OR

- 6 a. Explain high frequency response of FET amplifier. Derive expression for cutoff frequencies defined by input and output circuits. (08 Marks)
 - b. Explain the multistage frequency effects on cutoff frequencies and the bandwidth with required waveforms and response curves. (08 Marks)

CMRIT LIBRARY BANGALORE - 560 037

Module-4

a. What are the advantages of negative feedback in amplifier?

0 037

- a. What are the advantages of negative feedback in amplifier? (04 Marks)
 b. Derive the expression for Z_{if} and Z_{of} for a voltage series feedback connection with neat diagram. (06 Marks)
- c. Determine the voltage gain, input and output impedance with feedback for a voltage series feedback having A = -100, $R_i = 10k\Omega$ and $R_0 = 20k\Omega$ for feedback of $\beta = -0.1$. (06 Marks)

OR

- 8 a. What is Breackhausan's criteria for oscillation? How oscillation is generated in a circuit.
 (04 Marks)
 - b. Explain the working of a FET phase shift oscillator with neat diagram. Give the expression for oscillation. (06 Marks)
 - c. Draw the circuit diagram of uni-junction oscillator and explain the principle of operation and draw the characteristics curve. (06 Marks)

Module-5

- 9 a. What is Power Amplifier? Explain the operation of a transformation coupled class A power amplifier and show that maximum efficiency is 50%. (08 Marks)
 - b. Define voltage Regulator. Explain series and shunt voltage regulator. (08 Marks)

OR

- 10 a. Explain the operation of a class B push-pull amplifier and show that maximum conversions efficiency is 78.5%. (08 Marks)
 - b. For a class B amplifier using a supply of $V_{CC} = 30V$ and driving a load of 16Ω , determine the maximum input power, output power, and transistor dissipation. (08 Marks)
