

17EC32

Chird Semester B.E. Degree Examination, July/August 2022

Electronic Instrumentation

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Explain the following terms briefly:
 - i) Accuracy
 - ii) Precision
 - iii) Resolution and significant figures
 - iv) Gross errors.

(10 Marks)

b. What is thermocouple? Explain different types of thermocouple.

(10 Marks)

OR

2 a. Explain multirange voltmeter With a neat diagram.

(05 Marks)

b. Convert a basic 'D' Arsonval movement with internal resistance of 50Ω and full scale deflection current of 2mA into a multirange DC voltmeter with voltage range of 0-10V, 0-50V, 0-250V connect the multiplier resistance in series with 'D' Arsonval movement. [Fig.Q2(b)].

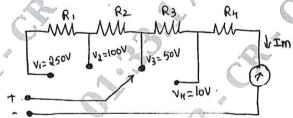


Fig.Q2(b)

(10 Marks)

c. Calculate the values of multiplier resistance on the 50V range of a DC voltmeter, that uses a $200\mu A$, meter measurement with an internal resistance of 100Ω . (05 Marks)

Module-2

- a. Explain the operation of the ramp type digital voltmeter with voltage to time conversion waveform and block diagram. (10 Marks)
 - b. With the help of neat diagram, explain the working of successive approximation type DVM.

 (10 Marks)

OR

a. Explain the working of digital tachometer and digital pH meter.

(10 Marks)

b. What is the principle used in measuring frequency of a signal digital technique, with diagram. Explain the operation of a digital frequency matter. (10 Marks)

Module-3

- 5 a. Draw the block diagram of CRO and explain the functions of each block. (10 Marks)
 - b. Draw the block diagram of CRT and explain the function of each block with CRT features.
 (10 Marks)

OR

- 6 a. Explain the operation of an AF sine and square wave generator with the help of a block diagram. (10 Marks)
 - b. Explain in detail the working of digital storage oscilloscope and list the advantages of digital storage oscilloscope. (10 Marks)

Module-4

- 7 a. Sketch and explain the operation of a phase sensitive detector to compare the phase of a signal with a reference signal. (10 Marks)
 - b. Derive the balance equation for Wheatstone's bridge and mention its advantages and limitations. (10 Marks)

OR SCHRIT LIBRARY
BANGALORE - 560 037

- 8 a. Find parallel R and C that causes a Wein's bridge to null with the following components values $R_1 = 2.7 \text{K}\Omega$, $R_2 = 22 \text{K}\Omega$, $C_1 = 5 \mu \text{F}$, $R_4 = 100 \text{K}\Omega$ and operating frequency is 2.2 KHz. (10 Marks)
 - b. Draw the Maxwell's bridge to determine inductance interms of known capacitance and derive Q factor and expression inductance. (10 Marks)

Module-5

- 9 a. Explain the operation of resistive position transducer with block diagram. (10 Marks)
 - b. What is gauge factor? Derive an expression for gauge factor and prove that $K = 1 + 2\mu$.

 (10 Marks)

OF

- 10 a. Explain the construction, principle and operation of LVDT. (10 Marks)
 - b. What are the different types of photoelectric transducer? Explain. (10 Marks)