

Contents lists available at ScienceDirect

Journal of Solid State Chemistry

journal homepage: www.elsevier.com/locate/jssc

Concomitant structural and ferroelectric properties of $Sr_2Bi_4Ti_5O_{18}$ ceramics sintered with $(K_{0.41}Na_{0.53}Li_{0.06})(Nb_{0.89}Sb_{0.06}Ta_{0.05})O_3$ perovskite^{*}

Rajasekhar Bhimireddi ^{a,*}, Sai Pavan Prashanth Sadhu ^b, Lokeswararao Dhavala ^b, Tukaram Shet ^c, Swarup Kundu ^b, Anees A. Ansari ^{d,e}, M. Aslam Manthrammel ^e, S. AlFaify ^e

^a Functional Materials Lab, Central Research Instruments Facility, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, 515134, Andhra Pradesh, India

^b Department of Physics, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, 515134, Andhra Pradesh, India

^c CMR Institute of Technology, Bengaluru, 560037, India

^d King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, 11451, Saudi Arabia

e Advanced Functional Materials & Optoelectronics Laboratory (AFMOL), Department of Physics, College of Science, King Khalid University, Abha, 61413, Saudi Arabia

ARTICLE INFO

Keywords: Lead-free ceramics Solid solution Ferroelectrics Relative permittivity XRD Raman

ABSTRACT

Lead free piezoelectric ceramics with the composition(1-x)Sr2Bi4Ti5O18+ $[(K_{0.41}Na_{0.53}Li_{0.06})(Nb_{0.89}Sb_{0.06}Ta_{0.05})O_3]$ (where x = 0, 0.05, 0.10, 0.15 and 0.20) were synthesized using the pre-reacted Sr₂Bi₄Ti₅O₁₈(SBT) and [(K_{0.41}Na_{0.53}Li_{0.06})(Nb_{0.89}Sb_{0.06}Ta_{0.05})O₃](KNLNST) powders via solid-state reaction carried out at 1130 °C. Based on X-ray diffraction studies it was confirmed that only less than 0.15 mol of KNLST was soluble in the SBT phase. Raman spectra analyses for these samples revealed that A and B site cations from KNLNST perovskite phase were found to occupy A and B site cations of SBT. There was an increase in the grain size with the increase in x and grains with plate-like morphology were seen in these samples when observed through a scanning electron microscope (SEM). The measured values of relative permittivity (rational electric permittivity) (300 at 1 MHz), dielectric loss (0.013 at 1 MHz), and maximum polarization (5.95 μC/cm²) for the samples with the composition x = 0.2 were found to be superior to that of undoped SBT. The decrease in Curie temperature with the increase in x for all the samples under study was confirmed through temperaturedependent dielectric measurements.

1. Introduction

The ferroelectric and piezoelectric materials have drawn much attention for the invention of excellent piezoelectric properties of leadbased (PbZr_{1-x}Ti_xO₃) ceramics since the 1950s. These materials are extensively used for multilayer ceramic capacitors, tunable capacitors for microwave technologies, sensors, dynamic random access memories, transducers, actuators, and a few other electronic device applications [1–4]. But unfortunately, lead-based materials are non-environmental friendly due to their toxicity, and many countries around the globe banned the use of lead-based materials for several applications, even though they exhibited excellent properties. In recent years the researchers have developed various eco-friendly lead-free piezoelectric materials in terms of their performance [5–10]. Among the lead-free piezoelectric ceramics, the Aurivillius family of oxides are considered as most promising

 \star The authors' Sadhu and Dhavala have contributed equally.

* Corresponding author.

https://doi.org/10.1016/j.jssc.2022.122959

Received 7 October 2021; Received in revised form 29 January 2022; Accepted 31 January 2022 Available online 5 February 2022 0022-4596/© 2022 Elsevier Inc. All rights reserved.

candidates owing to their high Curie temperatures, superior polarization fatigue resistance, high resistivity, and stable piezoelectric properties at high temperatures [11,12].

Generally, Aurivillius family oxides adopt orthorhombic structures consisting of alternate $(Bi_2O_2)^{2+}$ layers and $[A_{n-1}B_n O_{3n+1}]^{2-}$ perovskitelike slabs stacked along the *c*-axis, where A represents the mono-,di-,trivalent ion or combinations of them, B represents the tetra-, Penta-, hexavalent ions and *n* is an integer that represents the number of BO₆octahedra in $[A_{n-1}B_n O_{3n+1}]^{2-}$ between the $(Bi_2O_2)^{2+}$ layers [13-15]. Among them, $Sr_2Bi_4Ti_5O_{18}$ (SBT) is an n = 5 member of the bismuth layered structure ferroelectric (BLSF) material, which is one of the most promising candidates for the high-temperature piezoelectric device and ferroelectric non-volatile random access memory device applications [12,16,17]. A specific site (A/B) substitution in SBT plays a crucial role to achieve better piezoelectric and ferroelectric properties [18-23]. For instance, higher Curie temperature, the improved ferroelectric and

E-mail address: rsbreddi@gmail.com (R. Bhimireddi).