CMR INSTITUTE OF **TECHNOLOGY**

Internal Assesment Test $=$ I IIII Y 2022

1 (auchy-Réemann équations I. Castesian form.
Let f (2) = u(x, y) + iv (x, y) be analytic By def. of differentiability, $f'(z) = lim_{\Delta z \to 0} f(z + \Delta z) - f(z)$ $\Rightarrow f(z) = lim_{\Delta z \to 0} \left[u(x + \Delta x, y + \Delta y) + iv(\alpha + \Delta x, y + \Delta y) \right]$ $\Delta x + i \Delta y \qquad \qquad \qquad \qquad \qquad \Box$ Case(i) :- If Δz is purely real then
 $\Delta y = 0$ and as $\Delta z \rightarrow 0 \Rightarrow \Delta x \rightarrow 0$ $f'(z) = \lim_{\Delta x \to 0} \left[u(x+\Delta x, y) + iv(x+\Delta x, y) \right]$ $-\left[u(x,y)+i\sqrt{x},y\right]$ $\begin{cases} u(x+\Delta x,y)-u(x,y) \\ \Delta x \end{cases}$ + $\begin{cases} v(x+\Delta x,y) -v(x,y) \\ v(x+\Delta x,y) -v(x,y) \end{cases}$

 $\Rightarrow f'(z) = lim_{x \to 0} u(x + \Delta x, y) - u(x, y)$ $\Delta x\rightarrow 0$ + i lim
Dx-10 V (x+Ax, y) - v (x, y) Δ 2 $f(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}$ $- (2)$ Case Cie) :- It 22 c'e purely imaginary chen $\Delta x = 0$ and as $\Delta z \rightarrow 0 \Rightarrow \Delta y \rightarrow 0$. $f'(z) = \frac{\partial v}{\partial y} - i \frac{\partial u}{\partial y}$ (3) Equating real and imaginary parts of (2) and (3) ∂y ∂u $= -\frac{\partial u}{\partial x}$ ∂x ∂x

2. $w \in f(z)$ is sinz + y nie so) s s is noring ? 9 (prospection (x+ey)
= Sinx cos ey + cos x siney z sinn costig técosne sintige is cecha costy and v= cosx sinty $\frac{\partial u}{\partial x}$ 2 cos se costy, $\frac{\partial u}{\partial y}$ 2 sin x sinty $\frac{1}{2}$ du 3-sinz sinty, du 2005x costy. $\Rightarrow \frac{\partial u}{\partial x}(z,\frac{\partial v}{\partial y}+y....y)=\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}$ Hence CR equations are satisfied. 5 f (2) essin 2008 analytic. Sy Milne Home $\frac{dw}{dz} = f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}$ z Cosx Coshy + (E sin x sinh y) 2 COSA COSKY - l'Senne Senky c COSA Coshy - Sina Siniy 2 COSA COSIY - Sinne Siney $3+7608(22+19)200821)$ $f(z) = \begin{cases} z & z \geq e^{z} + e^{z} + c & z \geq e^{z} + c \end{cases}$

3. Géven v c e^x (x sing + y cosy). $\frac{\partial v}{\partial x}$ = $e^{x}(3eny) + (x sin y + y cos y)e^{x}$. e^{α} (sing + x sing + y cosy) $\frac{\partial v}{\partial y}$ = $e^{x}(x\cos y - y\sin y + \cos y)$ We have, $f'(z) = \frac{\partial u}{\partial x} + c \frac{\partial v}{\partial x}$ $\frac{z}{2y} = \frac{2y}{2y} + c^2 \frac{2y}{2x}$ (By CR eques) $\Rightarrow f'(z) = e^{x}(xcosy - ysiny + cosy)$ + c e x [Siny + x Siny + y cosy) By Milne Monson method, puts x 2 2 and y 20, we get se $21645(51)$ $f'(z)$ z $e^{z}(z-0+1)$ t $e^{z}(0+0+0)$ $z(z+1)e^{\lambda_{1203}+\lambda_{203}}$ $f(z)$ = $z e^{z} + e^{z}$ Inlégiating wit 2, $f(z) = ze^{z}-\int e^{z}(1) dz + e^{z} + c$ $f(z)$ z $7e^{z}-e^{z}+e^{z}+c$ z $2e^{z}+c$.

4) If $f(z)$ is holomorphic, show that $\frac{1}{2}\frac{\partial}{\partial x}\frac{1}{16(3)}\frac{1}{3}\frac{1}{3}+\frac{1}{2}\frac{\partial}{\partial y}\frac{1}{16(3)}\frac{1}{3}+\frac{1}{2}\frac{1}{3}$ Pf: Let fl3) : utiv be analytic: $|f(\zeta)| = \sqrt{u^2 + v^2}$ Partially diff O wet u, $2|f(\zeta)| \frac{\partial}{\partial x}|f(\zeta)| = \lim_{\delta x \to 0} \frac{\partial u}{\partial x} + \lim_{\delta x \to 0} \frac{\partial v}{\partial x}$ Squasing both sides, weget $\int f(\zeta) |^2 \int \frac{\partial}{\partial x} |f(\zeta)| \int \frac{z}{c} \left(u \frac{\partial u}{\partial x} + v \frac{\partial v}{\partial x}\right)^2$ $=|f(\xi)|^{2}\left\{\frac{\partial}{\partial x}|f(\xi)|\right\}^{2}\epsilon u^{\epsilon}\left(\frac{\partial u}{\partial x}\right)^{2}+v^{2}\left(\frac{\partial u}{\partial x}\right)^{2}$ $+2u\nu \frac{\partial u}{\partial x} \frac{\partial \nu}{\partial x}$ (2) Similarly, $\left|\frac{1}{2}\right|^2\left\{\frac{\partial}{\partial y}\left|\frac{1}{2}(z)\right|\right\}^{\frac{2}{2}}\mu^2\left(\frac{\partial u}{\partial y}\right)^2+v^2\left(\frac{\partial u}{\partial y}\right)^2$ $+2u\,v\,\frac{\partial u}{\partial y}\,\frac{\partial v}{\partial y}$

Adding 2 and 3, (2) = $|f(3)|^2$ $\left\{\frac{\partial}{\partial x}|f(3)|\right\}^2$ = $u^2\left(\frac{\partial u}{\partial x}\right)^2+v^2\left(\frac{\partial v}{\partial x}\right)^2+2uv^2\frac{\partial u}{\partial x}\frac{\partial v}{\partial x}$ $(3) |f(\zeta)|^2 \left\{ \frac{\partial}{\partial y} |f(\zeta)| \right\}^2 u^2 \left(\frac{\partial u}{\partial y} \right)^2 + v^2 \left(\frac{\partial v}{\partial y} \right)^2 + 2uv \frac{\partial u}{\partial y} \frac{\partial v}{\partial y}$ $\left[\frac{1}{\left(\frac{2}{3}\right)\right]^2}\left[\frac{2}{3\pi}\left[\frac{1}{3}\right]\right]^2+\frac{2}{3\pi}\left[\frac{1}{3}\right]\left[\frac{2}{3}\right]^2\right]=u^2\left[\left(\frac{du}{3\pi}\right)^2+\left(\frac{du}{3\pi}\right)^2\right]+$ v^{2} $\left[\left(\frac{\partial v}{\partial x}\right)^{2}+\left(\frac{\partial v}{\partial y}\right)^{2}\right]+$ $2uy\left[\frac{\partial u}{\partial x}\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\frac{\partial v}{\partial y}\right]$ $=\mu^{2}[(\frac{\partial u}{\partial x})^{2} + (-\frac{\partial v}{\partial x})^{2}] + v^{2}[(\frac{\partial v}{\partial x})^{2} + (\frac{\partial u}{\partial x})^{2}]$ $+2uv\left[\begin{array}{ccc} \frac{\partial u}{\partial x} & \frac{\partial v}{\partial x} & \frac{\partial v}{\partial x} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial x} & \frac{\partial v}{\partial x} \end{array}\right]$ (: by applying CR egas).

 $[f(3)|^{2}[\frac{3}{2\pi}|f(3)|^{2}+\frac{3}{2\pi}|f(3)|^{2}]=(u^{2}+v^{2})[(\frac{3u}{2\pi})^{2}+(\frac{3u}{2\pi})^{2}]$ $\Rightarrow |f(x)|^{2}[\{\frac{3}{2}x|f(\zeta)|\}^{2}+\{\frac{3}{2}y|f(\zeta)|\}^{2}]-\pm |f(\zeta)|^{2}|f'(\zeta)|^{2}$ $\Rightarrow \left\{\frac{\partial}{\partial a}[f(\zeta)]\right\}^2 + \left\{\frac{\partial}{\partial y}[f(\zeta)]\right\}^2 = |f'(\zeta)|^2.$ $(\mathcal{B}_{f(\zeta)})$ ruter $|f(z)|$ $\sqrt{u^{2}+v^{2}}$ $1/f(\zeta)\big/\frac{2}{2}u^{2}+v^{2}$ $\bigotimes f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial u}{\partial x}$ $\int f'(z) \left(e \sqrt{\frac{\partial u}{\partial x}}\right)^2 + \left(\frac{\partial u}{\partial x}\right)^2$ $\left|\oint'(\zeta)\right|^{\frac{2}{\epsilon}}\left(\frac{\partial u}{\partial \zeta}\right)^{\frac{2}{\epsilon}}\left(\frac{\partial v}{\partial \zeta}\right)^{\frac{2}{\epsilon}}$

5. Find the mean of values, mean of values and the correlation coefficient from the regression lines $2x + 3y + 1 = 0$ and $x + 6y - 4 = 0$. Since regression lines passes through (\bar{x}, \bar{y}) we must have, $2\bar{x} + 3\bar{y} + 1 = 0$ $\bar{x} + 6\bar{y} - 4 = 0$ Solving, we obtain $\bar{x} = -2$, $\bar{y} = 1$

To find r ,

$$
2x + 3y + 1 = 0
$$

$$
\Rightarrow x = -\frac{3}{2}x - \frac{1}{2}
$$

And

$$
x + 6y - 4 = 0
$$

$$
\Rightarrow y = -\frac{1}{6}y + \frac{2}{3}
$$

The regression coefficients will be respectively $-2/3$ and -6 .

$$
\therefore r = \sqrt{\left(-\frac{3}{2}\right)X\left(\frac{1}{-6}\right)} = \pm \frac{1}{2}.
$$

The sign of r must be negative as both the regression coefficients are negative and hence $r = -0.5$.

Thus

$$
\overline{x}=-2, \overline{y}=1, r=-0.5
$$

 $Q6$

Here ranks 3.5 & 5.5 are repeated in subject1 7.5 is repeated in Subject 2 : m_1 = 2; m_2 = 2; m_3 = 2

: Rank Correlation Coefficient $\ell = 1 - \frac{6 \left[\xi d + \frac{m_1(m_1^2-1)}{2} + \cdots \right]}{2}$

$$
H = 10
$$

\n
$$
\rho = 1 - 6 \left[(76 + \frac{2(2-1)}{12}) + 2(2-1) + 2(2-1) \right]
$$

\n
$$
10(10-1)
$$

\n
$$
= 1 - 6 \left((76 + \frac{6}{12} + \frac{6}{12} + \frac{6}{12}) \right) = 1 - \frac{6(177.5)}{990}
$$

$$
= 1 - \frac{1065}{990} = -0.075
$$

: Rain Correlation Coefficient l = -0.075

1. Let
$$
\theta
$$
 be the angle between the two expressions lines
\n $y = m_1x + c_1$ and $y = m_2x + c_2$.
\nthen $tan \theta = \frac{m_2 - m_1}{(1 + m_2 m_1)}$
\nBut dx togethering times are $(y - \frac{1}{3}) = \frac{n_0 y}{\sigma_x} (x - \frac{1}{3})$ ($\frac{loghia}{logm}$)
\n $\Rightarrow m_1 = \frac{n_0 y}{\sigma_x}$
\n $\Rightarrow m_1 = \frac{n_0 y}{\sigma_x}$
\nand $(x - \frac{\pi}{3}) = \frac{n_0 z}{\sigma_x} (x - \frac{\pi}{3})$ ($\frac{loghia}{logm}$)
\n $\Rightarrow m_1 = \frac{n_0 y}{\sigma_x}$
\n $\frac{loghaz}{logaz}$
\n

$$
tan\theta = \left(\frac{1-\gamma^{2}}{\gamma}\right) \frac{\sigma_{\overline{x}} - \sigma_{\overline{y}}}{\sigma_{\overline{x}}^{2} + \sigma_{\overline{y}}^{2}}
$$

Hence the proof.

 $\boldsymbol{\tau}$

 \boldsymbol{Q}

Scanned with CamScanner

8. Find the best fit straight line for the following data and hence find the value of when

 $x = 30.$

Let $y = ax + b$ be the equation of the best fitting straight line.

The associated normal equations are as follows.

The normal equations become,

 $75a + 5b = 114$ $1375a + 75b = 1885$

On solving we have, $a = 0.7$ and $b = 12.3$.

Thus we get

$$
y=0.7x+12.3
$$

Further when $x = 30$ we obtain $y = 0.7(30) + 12.3 = 33.3$

$$
y=33.3
$$