
US
N

Internal Assessment Test 1 – May 2022
Sub: NoSql database Sub Code: 18CS823 Branch: CSE

Date: 14/05/22 Duration: 90 mins Max Marks: 50 Sem /
Sec: VIII/A,B,C OBE

Answer any 5 FIVE FULL Questions MARKS CO RBT
1 What is the version stamp? What are the ways to create version stamps for single

server and peer to peer architecture?
Version stamp - 1 marks
Ways to create version stamp in single server model - 5 marks
Ways to create version stamp in distributed model-4 marks

[10] CO1 L2

2 Describe i) Impedance mismatch with suitable examples ii) Graph database iii)
CAP theorem
Impedance mismatch with suitable examples- 3 marks
Graph database and diagram-4 marks
CAP theorem-3 marks

[10] CO1 L2

3 Summarize the ways to relax consistency. Explain the trade-offs in various
distribution models after relaxing consistency with examples. (4+6 marks)
Ways to relax consistency-4 marks
Various tradeoffs-6 marks

[10] CO1 L2

4 What do you mean by write-write conflict/consistency and read-write consistency?
Explain with suitable examples.
write-write consistency with example - 3+2 marks
read-write consistency with example- 3+2 marks

[10] CO1 L2

5 Discuss advantages and disadvantages of Schemalessness? Explain Materialised
views.
advantages and disadvantages of Schemalessness- 5 marks
Materialised view- 5 marks

[10] CO1 L2

6 Assume an organization needs to create an online platform for its employees to
create posts and add various images, videos, audio, and comments. Any employee
can comment on these posts and rate them. Employees can join different groups as
per their interests. The landing page will have a feed of posts that employees can
share and interact with. 

For the given scenario, suggest which type of database implementation (SQL /
NoSQL) would be most suitable and specify appropriate reasons for your choice of
the database implementation. (tip: write sample table names to show connections)

Type of database implementation - 2 marks
Specify appropriate reason- 7 marks

[10] CO2 L4





1. What is the version stamp? What are the ways to create version stamps for single server and peer to
peer architecture?

Version stamps help you detect concurrency conflicts. When you read data, then update it, you can
check the version stamp to ensure nobody updated the data between your read and write.
• Version stamps can be implemented using counters, GUIDs, content hashes, timestamps, or a
combination of these.
• With distributed systems, a vector of version stamps allows you to detect when different nodes
have conflicting updates.
Ways to create version stamp:
1. Using a counter, always incrementing it when you update the resource. Counters are useful since
they make it easy to tell if one version is more recent than another. On the other hand, they require
the server to generate the counter value,and also need a single master to ensure the counters
aren’t duplicated.
2. Another approach is to create a GUID, a large random number that’s guaranteed to be unique.
These use some combination of dates, hardware information, and whatever other sources of
randomness. The nice thing about GUIDs is that they can be generated by anyone and never get
duplicated; a disadvantage is that they are large and can’t be compared directly for recentness.
3. The third approach is to make a hash of the contents of the resource. With a big enough hash key
size, a content hash can be globally unique like a GUID and can also be generated by anyone; the
advantage is that they are deterministic—anynode will generate the same content hash for the
same resource data. However, like GUIDs they can’t be directly compared for recentness, and they
can be lengthy.
4. A fourth approach is to use the timestamp of the last update. Like counters, they are reasonably
short and can be directly compared for recentness, yet have the advantage of not needing a single
master. Multiple machines can generate timestamps—but to work properly, their clocks have to be
kept in sync. There's also a danger that if the timestamp is too granular you can get duplicates—it’s
no good using timestamps of a millisecond precision if you get many updates per
millisecond.
5. You can blend the advantages of these different version stamp schemes by using more than one
of them to create a composite stamp. For example, CouchDB uses a combination of counter and
content hash.

Assume an organization needs to create an online platform for its employees to create posts and
add various images, videos, audio, and comments. Any employee can comment on these posts and
rate them. Employees can join different groups as per their interests. The landing page will have a
feed of posts that employees can share and interact with.
For the given scenario, suggest which type of database implementation (SQL / NoSQL) would be
most suitable and specify appropriate reasons for your choice of the database implementation.



2. Describe i) Impedance mismatch with suitable examples ii) Graph database iii) CAP theorem

Impedance Mismatch

● For application developers, the biggest frustration has been what’s commonly called the impedance

mismatch: the difference between the relational model and the in-memory data structures.

● The relational data model organizes data into a structure of tables and rows, or more properly, relations

and tuples.

● In the relational model, a tuple is a set of name-value pairs and a relation is a set of tuples. (The relational

definition of a tuple is slightly different from that in mathematics and many programming languages with a

tuple data type, where a tuple is a sequence of values.)

● All operations in SQL consume and return relations, which leads to the mathematically elegant relational

algebra.

● This foundation on relations provides a certain elegance and simplicity, but it also introduces limitations.

In particular, the values in a relational tuple have to be simple—they cannot contain any structure, such as

a nested record or a list. This limitation isn’t true for in-memory data structures, which can take on much

richer structures than relations.

● As a result, if you want to use a richer in memory data structure, you have to translate it to a relational

representation to store it on disk. Hence the impedance mismatch—two different representations that

require translation.

● Impedance mismatch has been made much easier to deal with by the wide availability of object

relational mapping frameworks, such as Hibernate and iBATIS that implement well-known mapping

patterns [Fowler PoEAA], but the mapping problem is still an issue.

● Object-relational mapping frameworks remove a lot of grunt work, but could not solve problem of

impedance mismatch

● Relational databases continued to dominate the enterprise computing world



ii) Graph database

• A characteristic of graph is high flexibility.

• Any number of nodes and any number of edges can be added to expand a graph.

• The complexity is high and the performance is variable with scalability.

• Data store as series of interconnected nodes.

• Graph with data nodes interconnected provides one of the best database system when

relationships and relationship types have critical values.

This is ideal for capturing any data consisting of complex relationships such as social networks, product

preferences, eligibility rules

● Once you have built up a graph of nodes and edges, a graph database allows you to query that network

with query operations designed with this kind of graph in mind.

● Doing same with lot of joins in RDBMS is very expensive process

● Graph databases make traversal along the relationships very cheap.

This is majorly because graph databases shift most of the work of navigating relationships from query time

to insert time.

● Ideal for situations where querying performance is more important than insert speed.

● The emphasis on relationships makes graph databases very different from aggregate-oriented databases.



● Databases are more likely to run on a single server rather than distributed across clusters.

● ACID transactions need to cover multiple nodes and edges to maintain consistency.

● The only thing they have in common with aggregate-oriented databases is their rejection of the relational

model.

iii) CAP Theorem

• Any two properties must be satisfied

• Consistency means all copies have the same value like in traditional DBs.

• Availability means at least one copy is available in case a partition becomes inactive or fails. For example,

in web applications, the other copy in the other partition is available.

• Partition means parts which are active but may not cooperate (share) as in distributed DBs.

1.Consistency in distributed databases

• All nodes observe the same data at the same time. Therefore, the operations in one partition of

the database should reflect in other related partitions in case of distributed database.

• Operations, which change the sales data from a specific showroom in a table should also reflect in

changes in related tables which are using that sales data.

2.Availability

• Availability means that during the transactions, the field values must be available in other

partitions of the database so that each request receives a response on success as well as failure.

(Failure causes the response to request from the replicate of data).

• Distributed databases require transparency between one another.

• Network failure may lead to data unavailability in a certain partition in case of no replication.

• Replication ensures availability.

3.Partition

• Partition means division of a large database into different databases without affecting the

operations on them by adopting specified procedures



3. Summarize the ways to relax consistency. Explain the trade-offs in various distribution models after
relaxing consistency with examples

Relaxing Consistency : Consistency is a Good Thing—but,it comes with sacrifices.

●It is always possible to design a system to avoid inconsistencies, but often impossible to do so without

making unbearable sacrifices in other characteristics of the system.

●As a result, we often have to tradeoff consistency for something else.

●Furthermore, different domains have different tolerances for inconsistency, and we need to take this

tolerance into account as we make our decisions.

● Trading off consistency is a familiar concept even in single-server relational database systems. Here,

our principal tool to enforce consistency is the transaction, and transactions can provide strong

consistency guarantees.

● However, transaction systems usually come with the ability to relax isolation levels, allowing queries to

read data that hasn’t been committed yet.

● In practice we see most applications relax consistency down from the highest isolation level (serialized)

in order to get effective performance.

● We most commonly see people using the read-committed transaction level, which eliminates some

read-write conflicts but allows others.

●Many systems forgo transactions entirely because the performance impact of transactions is too high.

On a small scale, we saw the popularity of MySQL during the days when it didn’t support transactions.

Many websites liked the high speed of MySQL and were prepared to live without transactions.

● At the other end of the scale, some very large websites, such as eBay, have had to forgo transactions in

order to perform acceptably— this is particularly true when you need to introduce sharding.

● Even without these constraints, many application builders need to interact with remote systems that are

outside a transaction boundary, so updating outside of transactions is a quite common occurrence for

enterprise applications.

4. What do you mean by write-write conflict/consistency and read-write consistency? Explain with
suitable examples.

Take an example of considering updating a telephone number. Coincidentally, Martin and Pramod are

looking at the company website and notice that the phone number is out of date. They both have update



access, so they both go in at the same time to update the number. We’ll assume they update it using a

slightly different format. This issue is called a write-write conflict: two people updating the same data

item at the sametime.

When the writes reach the server, the server will serialize them—decide to apply one,then the other.

Let’s assume it uses alphabetical order and picks Martin’s update first,then Pramod’s. Without any

concurrency control, Martin’s update would be applied and immediately overwritten by Pramod’s. In this

case Martin’s is a lost update. We see this as a failure of consistency because Pramod’s update was based

on the state beforeMartin’s update, yet was applied after it.

Having a data store that maintains update consistency is one thing, but it doesn't guarantee that readers of

that data store will always get consistent responses to their requests.

● Let’s imagine we have an order with line items and a shipping charge. The Shipping charge is calculated

based on the line items in the order. If we add a line item, we thus also need to recalculate and update the

shipping charge. In a relational database, the shipping charge and line items will be in separate tables.

● The danger of inconsistency is that Martin adds a line item to his order, Pramodthen reads the line items

and shipping charge, and then Martin updates the shipping charge. This is an inconsistent read or

read-write conflict: Pramod has done a read in the middle of Martin’s write.

\



5. Discuss advantages and disadvantages of Schemalessness? Explain Materialised views.

Schemaless Databases

● A common theme across all the forms of NoSQL databases is that they are schemaless.

● In a relational database, first have to define a schema—a defined structure for the database which says

what tables,which columns exist, and what data types each column can hold.

● Before you store some data, you have to have the schema defined for it.

● With NoSQL databases, storing data is much more casual. A key-value store allows you to store any data

you like under a key.

● A document database effectively does the same thing, since it makes no restrictions on the structure of

the documents you store.

● Column-family databases allow you to store any data under any column you like.Graph databases allow

you to freely add new edges and freely add properties to nodes and edges as you wish.

Advocates of schemaless is freedom and flexibility.

With a schema, you have to figure out in advance what you need to store, but that can be hard to do.

Without a schema binding you, you can easily store whatever you need. This Allows you to easily change

your data storage as you learn more about your project. You can easily add new things as you discover

them.

Furthermore, if you find you don’t need some things anymore, you can just stop storing them, without

worrying about losing old data as you would if you delete columns in a relational schema.

Schemaless store also makes it easier to deal with nonuniform data: data where each record has a different

set of fields.

Problems of Schemalessness

Schemalessness is appealing, but it brings some problems of its own.

If all you are doing is storing some data and displaying it in a report as a simple list of fieldName:value lines

then a schema is only going to get in the way.

Fact is that whenever we write a program that accesses data, that program almost always relies on some

form of implicit schema.

This implicit schema is a set of assumptions about the data’s structure in the code that manipulates the

data. Having the implicit schema in the application code results in some problems. It means that in order to

understand what data is present you have to dig into the application code.



If that code is well structured you should be able to find a clear place from which to deduce the schema.

But there are no guarantees; it all depends on how clear the application code is.

Furthermore, the database remains can’t use the schema to help it decide how to store and retrieve data

efficiently. It can’t apply its own validations upon that data to ensure that different applications don’t

manipulate data in an inconsistent way.

Schemaless DB: shifting of schema to code

Essentially, a schemaless database shifts the schema into the application code that accesses it. This

becomes problematic if multiple applications, developed by different people, access the same database.

Materialized Views

● In aggregate-oriented data models, if you want to access orders, it’s useful to have all the data for an

order contained in a single aggregate that can be stored and accessed as a unit.

● In scenarios where if a product manager wants to know how much a particular item has sold over the last

couple of weeks? Aggregate oriented data model force to check all the orders in that aggregate, indexing

on product works but works against aggregate structure.

● In relational db can access data in different ways using views views. A view is like a relational table (it is a

relation) but it’s defined by computation over the base tables.

● Views provide a mechanism to hide from the client whether data is derived data orbase data—but can’t

avoid the fact that some views are expensive to compute.

● To cope with this, materialized views were invented, which are views that are computed in advance and

cached on disk. Materialized views are effective for data that is read heavily but can stand being somewhat

stale.

● Although NoSQL databases don’t have views, they may have precomputed and cached queries, and they

reuse the term “materialized view” to describe them.

● It’s also much more of a central aspect for aggregate-oriented databases than it is for relational systems.

Eg MapReduce

There are two rough strategies to building a materialized view.

❏ The first is the eager approach where you update the materialized view at the same time you update the

base data for it.

❏ In this case, adding an order would also update the purchase history aggregates for each product.

❏ This approach is good when you have more frequent reads of the materialized view than you have

writes and you want the materialized views to be as fresh as possible.



❏ The application database approach is valuable here as it makes it easier to ensure that any updates to

base data also update materialized views.

Second approach: If you don’t want to pay that overhead on each update,you can run batch jobs to update

the materialized views at regular intervals.

● You’ll need to understand your business requirements to assess how stable your materialized views can

be.

● You can build materialized views outside of the database by reading the data,computing the view, and

saving it back to the database.

● More often databases will support building materialized views themselves.

● In this case, you provide the computation that needs to be done, and the database executes the

computation when needed according to some parameters that you configure.

● This is particularly handy for eager updates of views with incrementalmap-reduce.

● Materialized views can be used within the same aggregate. An order document might include an order

summary element that provides summary information about the order so that a query for an order

summary does not have to transfer the entire order document.

● Using different column families for materialized views is a common feature of column-family databases.

● An advantage of doing this is that it allows you to update the materialized view within the same atomic

operation.

6. Assume an organization needs to create an online platform for its employees to create posts and add
various images, videos, audio, and comments. Any employee can comment on these posts and rate
them. Employees can join different groups as per their interests. The landing page will have a feed of
posts that employees can share and interact with.

For the given scenario, suggest which type of database implementation (SQL / NoSQL) would be
most suitable and specify appropriate reasons for your choice of the database implementation

solution:

Best suitable database implementation would be NoSQL databases.

Following are the reasons:

For the given scenario, there are several entities such as employee, post, comments, images, audios,
videos, rating and so on.



You have several relationships that link these entities as shown in the table below:

Use NoSQL database implementation because,

NoSQL databases are very flexible in structure and can store all types of related data in one place

User can retrieve the whole post with a single query avoiding joins thus increasing the performance

Data on NoSQL databases scale out naturally and hence able to deal with the continuous streaming
of posts

Using SQL databases is not suggested as,

Several joins are used to display the post containing various forms of data which is very time
consuming

Data is existing in heterogeneous forms that SQL does not support

Continuous streaming of posts that are dynamically loaded onto the screen require thousands of
queries to be performed


