

USN

Internal Assessment Test 1 – July 2022

Sub: Design and Analysis of Algorithms Sub Code: 18CS42 Branch: CSE

Date: 08/07/2022 Duration: 90 mins Max Marks: 50 Sem/Sec: IV/A,B&C OBE

Answer any FIVE FULL Questions MARKS CO RBT

1 a. Define an algorithm. What are the characteristics of an algorithm? [5] CO1 L1

 Ans: An algorithm is a finite set of instructions that accomplishes a particular task.

An algorithm must satisfy the following criteria

Input: Zero or more quantities are externally supplied

Output: At least one quantity is produced

Definiteness: Each instruction is clear and unambiguous

Finiteness: For all case, algorithm terminates after a finite number of steps

Effectiveness: Every instruction must be basic

 b. Explain the two common ways of representing a graph with an example [5] CO1 L1

 Ans: Adjacency matrix and adjacency list with examples

2 Write an algorithm to find the maximum elements in an array. Identify the basic operation in the

algorithm and identify its worst case, average case, and best case time complexity

[4+2+2+2] CO2 L2

 ALGORITHM MaxElement(A[0..n − 1])

//Determines the value of the largest element in a given array

//Input: An array A[0..n − 1] of real numbers

//Output: The value of the largest element in A

maxval ←A[0]

for i ←1 to n − 1 do

if A[i]>maxval

maxval←A[i]

return maxval

Taking comparison operator as the basic operation, n-1 comparisons are made

irrespective of the input pattern. Hence the worst case, average case and best case

all O(n)

3 a. Explain any three asymptotic notations. [6] CO2 L1

 O notation: A function t (n) is said to be in O(g(n)), if there exist some positive

constant c and some nonnegative integer n0 such that

Θ Notation: A function t (n) is said to be in Θ (g(n)), if there exist some positive

constants c1 and c2 and some nonnegative integer n0 such that

Ω-notation: A function t (n) is said to be in Ω (g(n)), if there exist some positive

constant c and some nonnegative integer n0 such that

 b. State with reasons which of the following are true

i. 0.3n(n-1) belongs to Theta(n^2)

ii. 1/2n(n+1) belongs to Theta(n^2)

iii. 100n+5 belongs to O(n^2).

iv. 555nlogn belongs to O(n^2)

[4] CO2 L3

 i. 0.3n(n-1) belongs to Theta(n^2) (TRUE)

ii. 1/2n(n+1) belongs to Theta(n^2) (TRUE

iii. 100n+5 belongs to O(n^2). (TRUE). FLASE will be given 0.5 marks

if you say it belongs to O(n)

iv. 555nlogn belongs to O(n^2) (TRUE). FLASE will be given 0.5

marks if you say it belongs to O(n log n)

4 What is Decrease and Conquer? What are its 3 major variations? Explain with an example for each. [10] CO2 L2

 The decrease-and-conquer technique is based on exploiting the relationship between

a solution to a given instance of a problem and a solution to its smaller instance.

(2.5 mark)

There are three major variations of decrease-and-conquer:

Decrease by a constant (2.5 mark)

Example: Exponentiation a^b = a^(b-1) * a

Decrease by a constant factor (2.5 mark)

Example: Exponentiation a^b = (a^(b/2))^2 if b is even

 a^b = a * (a^(b/2))^2 if b is odd

Variable size decrease (2.5 mark)

Example: GCD computation: gcd(m, n) = gcd(n, m mod n)

5 a. Explain the general plan for analyzing the efficiency of a recursive algorithm.

[4] CO2 L1

 Decide on a parameter indicating an input’s size.

Identify the algorithm’s basic operation.

Check whether the number of times the basic op. is executed may vary on different

inputs of the same size. (If it may, the worst, average, and best cases must be

investigated separately.)

Set up a recurrence relation with an appropriate initial condition expressing the

number of times the basic op. is executed.

Solve the recurrence (or, at the very least, establish its solution’s order of growth)

by backward substitutions or another method.

 b. Consider the following recursive algorithm.

ALGORITHM Q(n)

//Input: A positive integer n

if n = 1 return 1

else return Q(n − 1) + n + 1

Set up a recurrence relation for the number of additions made by this algorithm and solve it.

[6] CO2 L3

 Recurrence equation is T(n) = 0 for n=0; T(n) = T(n-1) + 2 for n>1

Solve using backward substitution

T(n) = T(n-1) + 2

 = [T(n-2) +2] + 2 = T(n-2) + 4

 = [T(n-3) +2] + 2 = T(n-3) + 6

 . . .

 = T(n-i) + 2i

When i = n-1, equation becomes T(n) = T(n –(n-1) + 2(n-1) = T(1) + 2(n-1)

Since T(1) is 0, T(n) = 2(n-1). Hence the algorithm is in Θ(n).

6 Discuss how quick sort works to sort an array and trace for the following data. Draw the tree of

recursive calls made.

43 27 75 34 85 60 59 50 45

[10] CO1 L2

