
Faculty Signature CCI Signature HOD Signature

USN

Internal Assessment Test 1 – May 2022

Sub: Software Testing Sub
Code: 18IS62 Branch: ISE

Date: 06/05/2022 Duration: 90 min’s Max Marks: 50 Sem/Sec: VI A, B & C OBE
Answer any FIVE FULL Questions MARKS CO RBT

1a) Differentiate Error, Fault, and Failure with example. 4 CO1 L2
1b) What is the use of Venn diagram in testing? Explain with diagram. 6 CO1 L2
2a) Compare specification testing with code based testing 4 CO2 L2

2b) Write and explain the improved version of Triangle problem with generated test cases
using Normal Boundary value analysis.

6 CO1 L2

3a) Explain Test and Debug Cycle with a neat diagram. 6 CO1 L2

3b) Differentiate white box testing and black box testing with example. 4 CO1 L2

4 Write the test cases for the C function which takes two integers as input and finds the
maximum of the two integers using Robust Boundary Value analysis, andWorst case
Boundary Value analysis. Assume the inputs are in the range of 1 to 35000.

10 CO1 L2

5a) Explain Test generation strategies with diagram 5 CO1 L2

5b) Explain how to write a Oracle program for GUI with example. Draw the state diagram
for the same.

5 CO1 L2

6 Explain in detail about Normal Boundary value analysis, Robust Boundary value
analysis with input domain diagrams.

10 CO1 L2



USN

Internal Assessment Test 1 – May 2022
Sub: Software Testing-Scheme and Solutions Sub Code: 18IS62 Branch: ISE

Date: 06/05/2022 Duration: 90 min’s Max Marks: 50 Sem/Sec: VI A,B&C OBE
Answer any FIVE FULL Questions MARKS CO RBT

1a) Differentiate Error, Fault, and Failure with example
Definition:2 marks
Example: 2 marks

[4] CO1 L2

Error Fault Failure
Human Mistake, or bugs A fault is the result of

an error. It is more
precise to say that a
fault is the
representation of an
error, where
representation is the
mode of expression,
such as narrative text,
dataflow diagrams,
hierarchy charts, source
code, and so on.

When fault code is
executed failure will
occur.

Error in business logic in
Requirements. discount
15% instead of 10% for
purchase Rs. 10000

Fault in SRS and in
discount calculation

Wrong reduction value
for customer

1b) What is the use of Venn diagram in testing? Explain with diagram.
Point 1: 1mark
Two diagramsand Explanation: 2.5+2.5 = 5 marks

 Venn Diagrams are helpful in identifying the test cases. Venn Diagrams helps to find
certain specified behaviors have not been programmed and certain programmed
(implemented) behaviors have not been specified. These correspond to faults of
commission and to errors that occurred after the specification was complete.



Explanation:1.5 marks

[6] CO1 L2



Explanation: 1.5 marks

2a) Compare specification testing with code based testing
4 points: 4 marks

[4] CO2 L2

Specification Testing Code Based Testing
This is also called black box testing, in
which the content (implementation) of
the black box is not known, and the
function of the black box is understood
completely in terms of its inputs and
outputs

it is sometimes called white box (or
even clear box) testing.
The essential difference is that the
implementation(of the black box) is
known and used to identify test cases.

the only information used is the specification
of the software.

code-based testing uses the program
source code (implementation) as the
basis of test case identification.

Advantages (1) they are independent of how
the software is implemented, so if the
implementation changes, the test cases are
still useful; and (2) test case development
can occur in parallel with the
implementation, thereby reducing the overall
project development interval.

The ability to “see inside” the
black box allows the tester to
identify test cases on the basis of
how the function is actually
implemented.

Disadvantages: specification based test cases
frequently suffer from two problems:
significant redundancies may exist among
test cases, compounded by the possibility of
gaps of untested software

High Test case coverage.ess
Redundancy. Gaps are covered

2b) Write and explain the improved version of Triangle problem with generated test
cases using Normal Boundary value analysis
Program: 3Marks
Test cases: 2 marks
Explanation: 1 Mark

[6] CO1 L3





3 (a) Explain Test and Debug Cycle with a neat diagram.
Diagram: 3marks
Explanation: 3 marks

[6] CO1 L2



(b) Differentiate white box testing and black box testing with example.

4 differences with one example.

[4] CO1 L3

4 Write the test cases for the C function which takes two integers as input and finds
the maximum of the two integers using Robust Boundary Value analysis, and
Worst case Boundary Value analysis. Assume the inputs are in the range of 1 to
35000.
No of Inputs: 2 integers in the range 1 to 35000
{min, min+, nom, max-, max} ={1,2, 17500, 34999,35000}
Robust Boundary Value: {0,1,2,15000,34999,35000,35001}
Test Cases: 6n+1=6*2+1=13

[10] CO1 L3

S.No a b Output
1 17500 0 Invalid Input
2 17500 1 17500
3 17500 2 17500
4 0 17500 Invalid Input



5 1 17500 Invalid Input
6 2 17500 17500
7 17500 34999 34999
8 17500 35000 35000
9 17500 17500 17500
10 34999 17500 34999
11 35000 17500 35000
12 35001 17500 35001
13 17500 17500 17500
Worst case Boundary Value analysis
{min, min+, nom, max-, max}={1,2, 17500, 34999,35000}
Number of Test cases:= 5n =5*5=25
If minimum 10 test cases

S.No a b Output
1 1 1 Invalid Input
2 1 2 17500
3 1 17500 17500
4 1 34999 Invalid Input
5 1 35000 Invalid Input
6 2 1 17500
7 2 2 34999
8 2 17500 35000
9 2 34999 17500
10 2 35000 34999
11 17500 1 35000
12 17500 2 35001
13 17500 17500 17500
14 17500 34999 Invalid Input
15 17500 35000 17500
16 34999 1 17500
17 34999 2 Invalid Input
18 34999 17500 Invalid Input
19 34999 34999 17500
20 34999 35000 34999
21 35000 1 35000
22 35000 2 17500
23 35000 17500 34999
24 35000 34999 35000
25 35000 35000 35001



5
(a)

Explain Test generation strategies with diagram

 The tests are generated using a mix of formal and informal methods either directly
from the requirements document serving as the source.

 In more advanced test processes, requirements serve as a source for the development
of formal models.

 Several strategies are there for test case generation
 These techniques identify input variables and use formal techniques for test generation

and cause effect graphing.
 Another way is use of model based testing
 They need subset of requirements to be modeled using a formal notation which is

called as specification. The tests are generated from specification using FSMs,
Statecharts, Petri Nets and Timed I/O Automata notations for modeling.

 Unified modeling language can also used for modeling the requirements into proper
specification for test case generation.

 Model can also be built using predicate Logic and algebraic languages. Each
model has its own strengths and weaknesses

 Code based techniques can be used to generate tests, or modify existing ones, to
generate new tests that force a condition to evaluate to true or false.

 Two techniques: Program mutation and control flow coverage techniques

[5] CO1 L2

(b) Explain how to write a Oracle program for GUI with example. Draw the state
diagram for the same.
Example with diagram 2 marks
State Diagram: 2 marks

[5] CO1 L3



6 Explain in detail about Normal Boundary value analysis, and Robust Boundary
value analysis with input domain diagrams.
Normal Boundary value analysis[5 marks]
Explanation:2.5 marks
Diagram: 1.5 marks
Diagram explanation: 1 mark
Robust Boundary value analysis[5 marks]
Explanation:2.5 marks
Diagram: 1.5 marks
Diagram explanation: 1 mark
Normal Boundary value analysis
 The basic idea of boundary value analysis is to use input variable values at

their minimum, just above the minimum, a nominal value, just below their
maximum, and at their maximum.

 values are min, min+, nom, max- and max; The robust forms add two
values, min– and max+.

 The next part of boundary value analysis is based on a critical assumption; it’s
known as the “single fault” assumption in reliability theory. This says that
failures are only rarely the result of the simultaneous occurrence of two (or
more) faults.

[10] CO2 L2



 Thus the boundary value analysis test cases are obtained by holding the
values of all but one variable at their nominal values, and letting that
variable assume its extreme values.

 The boundary value analysis test cases for our function F of two variables are:

{<x1nom, x2min>, <x1nom, x2min+ >,<x1nom, x2nom>,<x1nom, x2max- >,
<x1nom, x2max>, <x1min, x2nom >, <x1min+, x2nom >, <x1max-, x2nom >,
<x1max, x2nom > }
 These are illustrated in the following Figure .

Robust Boundary value analysis
 Robust boundary value testing is a simple extension of normal boundary value

testing: in addition to the five boundary value analysis values of a variable, we
see what happens when the extrema are exceeded with a value slightly greater
than the maximum (max+) and a value slightly less than the minimum (min–).

 Robustness test cases for our continuing example are shown in Figure.

 Most of the discussion of boundary value analysis applies directly to
robustness testing, especially the generalizations and limitations. The most
interesting part of robustness testing is not with the inputs but with the
expected outputs.

 The main value of robustness testing is that it forces attention on exception
handling. With strongly typed languages, robustness testing may be very
awkward.

 Pascal, for example, if a variable is defined to be within a certain range, values



outside that range result in run-time errors that abort normal execution.
 This raises an interesting question of implementation philosophy: is it better to

perform explicit range checking and use exception handling to deal with
“robust values,” or is it better to stay with strong typing? The exception
handling choice mandates robustness testing.


