| USN | | | | | | |-----|--|--|--|--|--| | | | | | | | ## Internal Assessment Test 1 – May 2022 | Sub: | DATA | DATA MINING AND DATA WAREHOUSING | | | JSING | | Sub Code: | 18CS641 | Bran | nch: | ISE | | | |-------|--|----------------------------------|--------------|----------------|-----------------|---------|---------------|-----------------|--------|------|-----|-----|-----| | Date: | 10/05 | 5/2022 | Duration: | 90 min's | Max Marks: | 50 | Sem/Sec: | VI / A | , B & | С | | OE | BE | | | | | <u>A</u> | answer any FI | VE FULL Questi | ions | | | | MA | RKS | СО | RBT | | 1 (a) | Define | Data wa | rehouse. Exp | olain its Key | features. | | | | | [0] | 05] | CO1 | L1 | | (b) | (b) Differentiate OLTP with OLAP in terms of various criterions. [05] | | | | | | | 05] | CO1 | L2 | | | | | 2 | Explain the 3-tier architecture of Data warehouse in detail with a neat diagram. | | | | | | | | [1 | .0] | CO1 | L2 | | | 3 | patient, and the two measures count and charge, where charge is the fee that a doctor | | | | | | | [1 | .0] | CO1 | L3 | | | | | charges a patient for a visit. a. Enumerate three classes of schemas that are popularly used for modelling data warehouses using Star Schema. b. Draw star and snowflake schema diagram for the above data warehouse. c. Starting with the base cuboid [day, doctor, patient], what specific OLAP operations should be performed in order to list the total fee collected by each doctor in 2010. | | | | | | | | | | | | | | | d. To obtain the same list, write an SQL query assuming the data are stored in a relational database with the schema fee (day, month, year, doctor, hospital, patient, count, charge). | | | | | | | | | | | | | | 4 | Explain
Model. | with su | itable examp | oles and diag | rams the OLAF | oper | ations in mu | lti-dimensional | l data | [1 | .0] | CO1 | L2 | | 5 (a) | Write a | short no | ote on Comp | ute Cube Op | erator and Curs | se of I | Dimensionali | ty. | | [0 | 05] | CO2 | L1 | | (b) | Explain | the con | cept of Mate | rialization fo | or the Selected | Comp | outation of C | uboids. | | [0] | 05] | CO2 | L2 | | 6 | Explai | n indexi | ing OLAP I | Data: Bitma | p Index and Jo | oin In | dex with an | example. | | [1 | 0] | CO2 | L2 | [05] CO1 L2 | Internal | A | ssessme | ent | Tes | t 1 | _ | May | <u>2022</u> | |-----------------|---|---------|-----|------------|-----|---|-----|-------------| | · · | 7 | 1 | 0.1 | | | | | | | | Scheme of Evaluation | | | | | | | | | | |-------|----------------------|------------|-----------|------------|----|-----------|---------|----------|-----|-----| | Sub: | DATA MININ | G AND DATA | A WAREHOU | JSING | | Sub Code: | 18CS641 | Branch: | ISE | | | Date: | 10/05/2022 | Duration: | 90 min's | Max Marks: | 50 | Sem/Sec: | VI / A | A, B & C | | OBE | | Date: | 10/05/2022 | 10/05/2022 Duration: 90 min's Max Marks: 50 Sem/Sec: VI / A, B & C | | | | : C | OF | BE | | | |-------|--|--|---------------|-----------------|--------|--------------|--------------------|-------|-----|-----| | | Answer any FIVE FULL Questions | | | | | | | MARKS | СО | RBT | | 1 (a) | 1 0 | | | | | | | | CO1 | L1 | | | Scheme:- Defi | nition + expl | anation of fe | atures= 2+3 M | = 5N | 1 | | | | | | | Solution:- | | | | | | | | | | | | Data wareho | using provi | ides archite | ectures and t | ools | for busine | ess executives to | | | | | | systematically | organize, u | inderstand, | and use their d | lata t | o make strat | tegic decisions. | | | | | | A data warehouse is a subject-oriented, integrated, time-variant, and non-volatile | | | | | | | | | | | | collection of data in support of management's decision making process. | | | | | | cess. | | | | | | Features: | | | | | | | | | | | | Subject-Oriented: A data warehouse can be used to analyse a particula subject area. | | | | | | alyse a particular | | | | | | • Integrated: A data warehouse integrates data from multiple data sources. | | | | | | lata sources. | | | | | | • Time- | Variant: His | torical data | is kept in a da | ıta w | arehouse. | | | | | | | • Non-volatile: Once data is in the data warehouse, it will not change. So, historical data in a data warehouse should never be altered. | | | | | | | | | | ## (b) Differentiate OLTP with OLAP in terms of various criterions. Scheme: Differences of OLAP & OLTP with atleast 10 criterions:- 5 Marks # **Solution:-** | Feature | OLTP | OLAP | |-------------------------------|-------------------------------------|--| | Characteristic | operational processing | informational processing | | Orientation | transaction | analysis | | User | clerk, DBA, database professional | knowledge worker (e.g., manager, executive, analyst) | | Function | day-to-day operations | long-term informational
requirements decision support | | DB design | ER-based, application-oriented | star/snowflake, subject-oriented | | Data | current, guaranteed up-to-date | historic, accuracy maintained
over time | | Summarization | primitive, highly detailed | summarized, consolidated | | View | detailed, flat relational | summarized, multidimensional | | Unit of work | short, simple transaction | complex query | | Access | read/write | mostly read | | Focus | data in | information out | | Operations | index/hash on primary key | lots of scans | | Number of records
accessed | tens | millions | | Number of users | thousands | hundreds | | DB size | GB to high-order GB | ≥ TB | | Priority | high performance, high availability | high flexibility, end-user autonomy | | Metric | transaction throughput | query throughput, response time | | 2 | Explain the 3-tier architecture of Data warehouse in detail with a neat diagram. | [10] | CO1 | L2 | |---|--|------|----------|----| | | Scheme:- Explanation of all the Tiers + Diagram = 7+3 = 10 Marks | | | | | | Solution:- | | | | | | Query/report Analysis Data mining | | | | | | | | | | | | Top tier: Front-end tools | | | | | | | | | | | | | | | | | | OLAP server OLAP server | | | | | | | | | | | | Middle tier:
OLAP server | | | | | | | | | | | | | | | | | | Monitoring Administration Data warehouse Data marts | | | | | | Bottom tier: Data warehouse | | | | | | Metadata repository server | | | | | | Extract | | | | | | Cfean
Transform | | | | | | Load Data | | | | | | Refresh | | | | | | 999 99 11 11 11 11 11 11 11 11 11 11 11 | | | | | | Operational databases External sources | | | | | | | | | | | | • The bottom tier is a warehouse database server that is almost always a | | | | | | relational database system. | | | | | | A gateway is supported by the underlying DBMS and allows client programs | | | | | | to generate SQL code to be executed at a server. | | | | | | The middle tier is an OLAP server that is typically implemented using either | | | | | | (1) a relational OLAP (ROLAP) model or (2) a multidimensional OLAP | | | | | | (MOLAP) model. | | | | | | • The top tier is a front-end client layer, which contains query and reporting | | | | | 3 | tools, analysis tools, and/or data mining tools. | | | | | 3 | Suppose that a data warehouse consists of the three dimensions time, doctor, and patient, and the two measures count and charge, where charge is the fee | [10] | CO1 | L3 | | | that a doctor charges a patient for a visit. | | | | | | a. Enumerate three classes of schemas that are popularly used for modelling | | | | | | data warehouses using Star Schema. | | | | | | Scheme:- Star Schema Definition – 1 Mark | | | | | | Solution:- A fact table in the middle connected to a set of dimension tables. | | | | | | b. Draw star and snowflake schema diagram for the above data warehouse. | | | | | | Scheme:- Star and Snowflake Schema for Doctor Warehouse- 4 Marks | | | | | | Solution:- | | | | | | | | | | | | Solution | | <u> </u> | | | 6 | computed cuboids is referred to as the full cube. This choice typically requires huge amounts of memory space in order to store all of the pre-computed cuboids. 3.Partial materialization: Selectively compute a proper subset of the whole set of possible cuboids. Alternatively, we may compute a subset of the cube, which contains only those cells that satisfy some user-specified criterion, such as where the tuple count of each cell is above some threshold The partial materialization of cuboids or subcubes should consider three factors: (1) identify the subset of cuboids or subcubes to materialize; (2) exploit the materialized cuboids or subcubes during query processing; and (3) efficiently update the materialized cuboids or subcubes during load and refresh. Explain indexing OLAP Data: Bitmap Index and Join Index with an example. Scheme:- Explanation of Bitmap Index and Join Index with an example each: 5+5 | [10] | CO2 | L2 | |-------|--|------|-----|----| | 6 | amounts of memory space in order to store all of the pre-computed cuboids. 3.Partial materialization: Selectively compute a proper subset of the whole set of possible cuboids. Alternatively, we may compute a subset of the cube, which contains only those cells that satisfy some user-specified criterion, such as where the tuple count of each cell is above some threshold The partial materialization of cuboids or subcubes should consider three factors: (1) identify the subset of cuboids or subcubes to materialize; (2) exploit the materialized cuboids or subcubes during query processing; and (3) efficiently update the materialized cuboids or subcubes during load and refresh. | [10] | CO2 | L2 | | | amounts of memory space in order to store all of the pre-computed cuboids. 3.Partial materialization: Selectively compute a proper subset of the whole set of possible cuboids. Alternatively, we may compute a subset of the cube, which contains only those cells that satisfy some user-specified criterion, such as where the tuple count of each cell is above some threshold The partial materialization of cuboids or subcubes should consider three factors: (1) identify the subset of cuboids or subcubes to materialize; (2) exploit the materialized cuboids or subcubes during query processing; and | | | | | | amounts of memory space in order to store all of the pre-computed cuboids. 3.Partial materialization: Selectively compute a proper subset of the whole set of possible cuboids. Alternatively, we may compute a subset of the cube, which contains only those cells that satisfy some user-specified criterion, such as where the tuple count of each cell is above some threshold The partial materialization of cuboids or subcubes should consider three factors: (1) identify the subset of cuboids or subcubes to materialize; | | | | | | amounts of memory space in order to store all of the pre-computed cuboids. 3.Partial materialization: Selectively compute a proper subset of the whole set of possible cuboids. Alternatively, we may compute a subset of the cube, which contains only those cells that satisfy some user-specified criterion, such as where the tuple count of each cell is above some threshold The partial materialization of cuboids or subcubes should consider three factors: | | | | | | amounts of memory space in order to store all of the pre-computed cuboids. 3.Partial materialization: Selectively compute a proper subset of the whole set of possible cuboids. Alternatively, we may compute a subset of the cube, which contains only those cells that satisfy some user-specified criterion, such as where the tuple count of each cell is above some threshold | | | | | | amounts of memory space in order to store all of the pre-computed cuboids. 3.Partial materialization: Selectively compute a proper subset of the whole set of possible cuboids. Alternatively, we may compute a subset of the cube, which contains only those cells that satisfy some user-specified criterion, such as where the | | | | | | amounts of memory space in order to store all of the pre-computed cuboids. 3.Partial materialization: Selectively compute a proper subset of the whole set of possible cuboids. Alternatively, we may compute a subset of the cube, which | | | | | | amounts of memory space in order to store all of the pre-computed cuboids. 3.Partial materialization: Selectively compute a proper subset of the whole set of | | | | | | amounts of memory space in order to store all of the pre-computed cuboids. | | | | | | | | | | | | | | | | | | 2. Full materialization: Pre-compute all of the cuboids. The resulting lattice of | | | | | | · | | | | | | to computing expensive multidimensional aggregates on-the-fly, which can be extremely slow. | | | | | | 1. No materialization: Do not pre-compute any of the "non base" cuboids. This leads | | | | | | Solution:- 1 No materialization: Do not pro compute any of the "non base" cuboids. This leads | | | | | | Scheme:- Explanation of all types of Materialization: 1+1+3 Marks = 5 Marks | | | | | | Cuboids. | | | | | (b) | Explain the concept of Materialization for the Selected Computation of | [05] | CO2 | L2 | | | 1=1 | | | | | | quarter \leq Total number of cuboids = $\prod_{i=1}^{n} (L_i + 1)$, | | | | | | but rather at multiple conceptual levels such as in the hierarchy "day < month < | | | | | | For example, time is usually explored not at only one conceptual level (e.g., year), | | | | | | practice, many dimensions do have hierarchies. | | | | | | of cuboids for an n-dimensional data cube, as we have seen, is 2 ⁿ . However, in | | | | | | • If there were no hierarchies associated with each dimension, then the total number | | | | | | How many cuboids in an n-dimensional cube with L levels? | | | | | | Curse Of Dimensionality:- | | | | | | Ex:- define cube sales_cube [city, item, year]: sum(sales in dollars) | | | | | | statements, one for each subset of the n dimensions | | | | | | A cube operator on n dimensions is equivalent to a collection of group-by | | | | | | Solution:- | | | | | | Scheme:- Compute Cube Operator + Curse Of Dimensionality = 2+3 Marks= 5 Marks | | | | | 5 (a) | Write a short note on Compute Cube Operator and Curse of Dimensionality. | [05] | CO2 | L1 | | | axes in view to provide an alternative data presentation. | | | | | | • Pivot (also called rotate) is a visualization operation that rotates the data | | | | | | a selection on two or more dimensions. | | | | | | resulting in a subcube and the dice operation defines a subcube by performing | | | | | | • The slice operation performs a selection on one dimension of the given cube, | | | | | | dimension or introducing additional dimensions. | | | | | | • Drill-down can be realized by either stepping down a concept hierarchy for a | | | | | 1 | dimension or by dimension reduction. | | | | | | aggregation on a data cube, either by climbing up a concept hierarchy for a | | | | | | • The roll-up operation also called as the drill-up operation performs | | | | ### Solution:- - In the bitmap index for a given attribute, there is a distinct bit vector, Bv, for each value v in the attribute's domain. - If the attribute has the value v for a given row in the data table, then the bit representing that value is set to 1 in the corresponding row of the bitmap index. All other bits for that row are set to 0. Base table R1 R2 R3 R4 R5 R6 R7 R8 item H CP S H C P S city v T T T item bitmap index table | RID | H | C | P | S | |-----|---|---|---|---| | R1 | 1 | 0 | 0 | 0 | | R2 | 0 | 1 | 0 | 0 | | R3 | 0 | 0 | 1 | 0 | | R4 | 0 | 0 | 0 | 1 | | R5 | 1 | 0 | 0 | 0 | | R6 | 0 | 1 | 0 | 0 | | R7 | 0 | 0 | 1 | 0 | | R8 | 0 | 0 | 0 | 1 | city bitmap index table | RID | V | T | |-----|---|---| | R1 | 1 | 0 | | R2 | 1 | 0 | | R3 | 1 | 0 | | R4 | 1 | 0 | | R5 | 0 | 1 | | R6 | 0 | 1 | | R7 | 0 | 1 | | R8 | 0 | 1 | | | | | Note: H for "home entertainment," C for "computer," P for "phone," S for "security," V for "Vancouver," T for "Toronto." #### Indexing OLAP data using bitmap indices. - The join indexing method gained popularity from its use in relational database query processing. Traditional indexing maps the value in a given column to a list of rows having that value. - In contrast, join indexing registers the joinable rows of two relations from a relational database. For example, if two relations R(RID, A) and S(B, SID) join on the attributes A and B, then the join index record contains the pair (RID, SID), where RID and SID are record identifiers from the R and S relations, respectively. Linkages between a sales fact table and location and item dimension tables. Linkages between a sales fact table and location and item dimension tables. Join index table for | location | sales_key | |-------------|-----------| | Main Street | T57 | | Main Street | T238 | | Main Street | T884 | | | | Join index table for | item | sales_key | |--------------------|-------------| | Sony-TV
Sony-TV | T57
T459 | | *** | *** | Join index table linking location and item to sales | location | item | sales_key | |-------------|---------|-----------| | Main Street | Sony-TV | T57 | | *** | | 3.00 |