USN					

Internal Assessment Test 1 – May 2022

Sub:	DATA	DATA MINING AND DATA WAREHOUSING			JSING		Sub Code:	18CS641	Bran	nch:	ISE		
Date:	10/05	5/2022	Duration:	90 min's	Max Marks:	50	Sem/Sec:	VI / A	, B &	С		OE	BE
			<u>A</u>	answer any FI	VE FULL Questi	ions				MA	RKS	СО	RBT
1 (a)	Define	Data wa	rehouse. Exp	olain its Key	features.					[0]	05]	CO1	L1
(b)	(b) Differentiate OLTP with OLAP in terms of various criterions. [05]							05]	CO1	L2			
2	Explain the 3-tier architecture of Data warehouse in detail with a neat diagram.								[1	.0]	CO1	L2	
3	patient, and the two measures count and charge, where charge is the fee that a doctor							[1	.0]	CO1	L3		
	 charges a patient for a visit. a. Enumerate three classes of schemas that are popularly used for modelling data warehouses using Star Schema. b. Draw star and snowflake schema diagram for the above data warehouse. c. Starting with the base cuboid [day, doctor, patient], what specific OLAP operations should be performed in order to list the total fee collected by each doctor in 2010. 												
	d. To obtain the same list, write an SQL query assuming the data are stored in a relational database with the schema fee (day, month, year, doctor, hospital, patient, count, charge).												
4	Explain Model.	with su	itable examp	oles and diag	rams the OLAF	oper	ations in mu	lti-dimensional	l data	[1	.0]	CO1	L2
5 (a)	Write a	short no	ote on Comp	ute Cube Op	erator and Curs	se of I	Dimensionali	ty.		[0	05]	CO2	L1
(b)	Explain	the con	cept of Mate	rialization fo	or the Selected	Comp	outation of C	uboids.		[0]	05]	CO2	L2
6	Explai	n indexi	ing OLAP I	Data: Bitma	p Index and Jo	oin In	dex with an	example.		[1	0]	CO2	L2

[05]

CO1 L2

Internal	A	ssessme	ent	Tes	t 1	_	May	<u>2022</u>
· ·	7	1	0.1					

	Scheme of Evaluation									
Sub:	DATA MININ	G AND DATA	A WAREHOU	JSING		Sub Code:	18CS641	Branch:	ISE	
Date:	10/05/2022	Duration:	90 min's	Max Marks:	50	Sem/Sec:	VI / A	A, B & C		OBE

Date:	10/05/2022	10/05/2022 Duration: 90 min's Max Marks: 50 Sem/Sec: VI / A, B & C				: C	OF	BE		
	Answer any FIVE FULL Questions							MARKS	СО	RBT
1 (a)	1 0								CO1	L1
	Scheme:- Defi	nition + expl	anation of fe	atures= 2+3 M	= 5N	1				
	Solution:-									
	Data wareho	using provi	ides archite	ectures and t	ools	for busine	ess executives to			
	systematically	organize, u	inderstand,	and use their d	lata t	o make strat	tegic decisions.			
	A data warehouse is a subject-oriented, integrated, time-variant, and non-volatile									
	collection of data in support of management's decision making process.						cess.			
	Features:									
	 Subject-Oriented: A data warehouse can be used to analyse a particula subject area. 						alyse a particular			
	• Integrated: A data warehouse integrates data from multiple data sources.						lata sources.			
	• Time-	Variant: His	torical data	is kept in a da	ıta w	arehouse.				
	• Non-volatile: Once data is in the data warehouse, it will not change. So, historical data in a data warehouse should never be altered.									

(b) Differentiate OLTP with OLAP in terms of various criterions.

Scheme: Differences of OLAP & OLTP with atleast 10 criterions:- 5 Marks

Solution:-

Feature	OLTP	OLAP
Characteristic	operational processing	informational processing
Orientation	transaction	analysis
User	clerk, DBA, database professional	knowledge worker (e.g., manager, executive, analyst)
Function	day-to-day operations	long-term informational requirements decision support
DB design	ER-based, application-oriented	star/snowflake, subject-oriented
Data	current, guaranteed up-to-date	historic, accuracy maintained over time
Summarization	primitive, highly detailed	summarized, consolidated
View	detailed, flat relational	summarized, multidimensional
Unit of work	short, simple transaction	complex query
Access	read/write	mostly read
Focus	data in	information out
Operations	index/hash on primary key	lots of scans
Number of records accessed	tens	millions
Number of users	thousands	hundreds
DB size	GB to high-order GB	≥ TB
Priority	high performance, high availability	high flexibility, end-user autonomy
Metric	transaction throughput	query throughput, response time

2	Explain the 3-tier architecture of Data warehouse in detail with a neat diagram.	[10]	CO1	L2
	Scheme:- Explanation of all the Tiers + Diagram = 7+3 = 10 Marks			
	Solution:-			
	Query/report Analysis Data mining			
	Top tier: Front-end tools			
	OLAP server OLAP server			
	Middle tier: OLAP server			
	Monitoring Administration Data warehouse Data marts			
	Bottom tier: Data warehouse			
	Metadata repository server			
	Extract			
	Cfean Transform			
	Load Data			
	Refresh			
	999 99 11 11 11 11 11 11 11 11 11 11 11			
	Operational databases External sources			
	• The bottom tier is a warehouse database server that is almost always a			
	relational database system.			
	A gateway is supported by the underlying DBMS and allows client programs			
	to generate SQL code to be executed at a server.			
	The middle tier is an OLAP server that is typically implemented using either			
	(1) a relational OLAP (ROLAP) model or (2) a multidimensional OLAP			
	(MOLAP) model.			
	• The top tier is a front-end client layer, which contains query and reporting			
3	tools, analysis tools, and/or data mining tools.			
3	Suppose that a data warehouse consists of the three dimensions time, doctor, and patient, and the two measures count and charge, where charge is the fee	[10]	CO1	L3
	that a doctor charges a patient for a visit.			
	a. Enumerate three classes of schemas that are popularly used for modelling			
	data warehouses using Star Schema.			
	Scheme:- Star Schema Definition – 1 Mark			
	Solution:- A fact table in the middle connected to a set of dimension tables.			
	b. Draw star and snowflake schema diagram for the above data warehouse.			
	Scheme:- Star and Snowflake Schema for Doctor Warehouse- 4 Marks			
	Solution:-			
	Solution		<u> </u>	

6	computed cuboids is referred to as the full cube. This choice typically requires huge amounts of memory space in order to store all of the pre-computed cuboids. 3.Partial materialization: Selectively compute a proper subset of the whole set of possible cuboids. Alternatively, we may compute a subset of the cube, which contains only those cells that satisfy some user-specified criterion, such as where the tuple count of each cell is above some threshold The partial materialization of cuboids or subcubes should consider three factors: (1) identify the subset of cuboids or subcubes to materialize; (2) exploit the materialized cuboids or subcubes during query processing; and (3) efficiently update the materialized cuboids or subcubes during load and refresh. Explain indexing OLAP Data: Bitmap Index and Join Index with an example. Scheme:- Explanation of Bitmap Index and Join Index with an example each: 5+5	[10]	CO2	L2
6	amounts of memory space in order to store all of the pre-computed cuboids. 3.Partial materialization: Selectively compute a proper subset of the whole set of possible cuboids. Alternatively, we may compute a subset of the cube, which contains only those cells that satisfy some user-specified criterion, such as where the tuple count of each cell is above some threshold The partial materialization of cuboids or subcubes should consider three factors: (1) identify the subset of cuboids or subcubes to materialize; (2) exploit the materialized cuboids or subcubes during query processing; and (3) efficiently update the materialized cuboids or subcubes during load and refresh.	[10]	CO2	L2
	amounts of memory space in order to store all of the pre-computed cuboids. 3.Partial materialization: Selectively compute a proper subset of the whole set of possible cuboids. Alternatively, we may compute a subset of the cube, which contains only those cells that satisfy some user-specified criterion, such as where the tuple count of each cell is above some threshold The partial materialization of cuboids or subcubes should consider three factors: (1) identify the subset of cuboids or subcubes to materialize; (2) exploit the materialized cuboids or subcubes during query processing; and			
	amounts of memory space in order to store all of the pre-computed cuboids. 3.Partial materialization: Selectively compute a proper subset of the whole set of possible cuboids. Alternatively, we may compute a subset of the cube, which contains only those cells that satisfy some user-specified criterion, such as where the tuple count of each cell is above some threshold The partial materialization of cuboids or subcubes should consider three factors: (1) identify the subset of cuboids or subcubes to materialize;			
	amounts of memory space in order to store all of the pre-computed cuboids. 3.Partial materialization: Selectively compute a proper subset of the whole set of possible cuboids. Alternatively, we may compute a subset of the cube, which contains only those cells that satisfy some user-specified criterion, such as where the tuple count of each cell is above some threshold The partial materialization of cuboids or subcubes should consider three factors:			
	amounts of memory space in order to store all of the pre-computed cuboids. 3.Partial materialization: Selectively compute a proper subset of the whole set of possible cuboids. Alternatively, we may compute a subset of the cube, which contains only those cells that satisfy some user-specified criterion, such as where the tuple count of each cell is above some threshold			
	amounts of memory space in order to store all of the pre-computed cuboids. 3.Partial materialization: Selectively compute a proper subset of the whole set of possible cuboids. Alternatively, we may compute a subset of the cube, which contains only those cells that satisfy some user-specified criterion, such as where the			
	amounts of memory space in order to store all of the pre-computed cuboids. 3.Partial materialization: Selectively compute a proper subset of the whole set of possible cuboids. Alternatively, we may compute a subset of the cube, which			
	amounts of memory space in order to store all of the pre-computed cuboids. 3.Partial materialization: Selectively compute a proper subset of the whole set of			
	amounts of memory space in order to store all of the pre-computed cuboids.			
	2. Full materialization: Pre-compute all of the cuboids. The resulting lattice of			
	·			
	to computing expensive multidimensional aggregates on-the-fly, which can be extremely slow.			
	1. No materialization: Do not pre-compute any of the "non base" cuboids. This leads			
	Solution:- 1 No materialization: Do not pro compute any of the "non base" cuboids. This leads			
	Scheme:- Explanation of all types of Materialization: 1+1+3 Marks = 5 Marks			
	Cuboids.			
(b)	Explain the concept of Materialization for the Selected Computation of	[05]	CO2	L2
	1=1			
	quarter \leq Total number of cuboids = $\prod_{i=1}^{n} (L_i + 1)$,			
	but rather at multiple conceptual levels such as in the hierarchy "day < month <			
	For example, time is usually explored not at only one conceptual level (e.g., year),			
	practice, many dimensions do have hierarchies.			
	of cuboids for an n-dimensional data cube, as we have seen, is 2 ⁿ . However, in			
	• If there were no hierarchies associated with each dimension, then the total number			
	How many cuboids in an n-dimensional cube with L levels?			
	Curse Of Dimensionality:-			
	Ex:- define cube sales_cube [city, item, year]: sum(sales in dollars)			
	statements, one for each subset of the n dimensions			
	A cube operator on n dimensions is equivalent to a collection of group-by			
	Solution:-			
	Scheme:- Compute Cube Operator + Curse Of Dimensionality = 2+3 Marks= 5 Marks			
5 (a)	Write a short note on Compute Cube Operator and Curse of Dimensionality.	[05]	CO2	L1
	axes in view to provide an alternative data presentation.			
	• Pivot (also called rotate) is a visualization operation that rotates the data			
	a selection on two or more dimensions.			
	resulting in a subcube and the dice operation defines a subcube by performing			
	• The slice operation performs a selection on one dimension of the given cube,			
	dimension or introducing additional dimensions.			
	• Drill-down can be realized by either stepping down a concept hierarchy for a			
1	dimension or by dimension reduction.			
	aggregation on a data cube, either by climbing up a concept hierarchy for a			
	• The roll-up operation also called as the drill-up operation performs			

Solution:-

- In the bitmap index for a given attribute, there is a distinct bit vector, Bv, for each value v in the attribute's domain.
- If the attribute has the value v for a given row in the data table, then the bit representing that value is set to 1 in the corresponding row of the bitmap index. All other bits for that row are set to 0.

Base table

R1

R2

R3

R4

R5

R6

R7

R8

item

H

CP

S

H

C

P

S

city

v

T

T

T

item bitmap index table

RID	H	C	P	S
R1	1	0	0	0
R2	0	1	0	0
R3	0	0	1	0
R4	0	0	0	1
R5	1	0	0	0
R6	0	1	0	0
R7	0	0	1	0
R8	0	0	0	1

city bitmap index table

RID	V	T
R1	1	0
R2	1	0
R3	1	0
R4	1	0
R5	0	1
R6	0	1
R7	0	1
R8	0	1

Note: H for "home entertainment," C for "computer," P for "phone," S for "security," V for "Vancouver," T for "Toronto."

Indexing OLAP data using bitmap indices.

- The join indexing method gained popularity from its use in relational database query processing. Traditional indexing maps the value in a given column to a list of rows having that value.
- In contrast, join indexing registers the joinable rows of two relations from a
 relational database. For example, if two relations R(RID, A) and S(B, SID)
 join on the attributes A and B, then the join index record contains the pair
 (RID, SID), where RID and SID are record identifiers from the R and S
 relations, respectively.

Linkages between a sales fact table and location and item dimension tables.

Linkages between a sales fact table and location and item dimension tables.

Join index table for

location	sales_key
Main Street	T57
Main Street	T238
Main Street	T884

Join index table for

item	sales_key
Sony-TV Sony-TV	T57 T459
***	***

Join index table linking location and item to sales

location	item	sales_key
Main Street	Sony-TV	T57
***		3.00