

Scheme of Evaluation

Internal Assessment Test 1 – May 2022

Sub: Programming in Java Code: 18CS653

Date: 13/5/2022 Duration: 90mins

Max

Marks: 50
Sem: VI Branch: EEE/MECH

Note: Answer Any five full questions.

Question

Description Marks Distribution Max

Marks

1

a)
Explain breifly primtive type of data types in

Java.

1. Integer

2. Byte

3. Short

4. Long

5. Char

6. Boolean

7. Float

8. Double

1M*7 7M

10M

1

b) Explain the logical operator in Java with

suitable example.

AND

OR

NOT

1M*3 3M

2

a)
Write a Java program to print following

pattern.

5M 5M

10M

2

b) Write a program to find factorial of a number 5.

Input

Loop

output

1M

3M

1M

5M

3

a) How Java arrays are initialized and declared ,

explain with an example

Array-syntax

Array initialization

example

1M

2M

2M

5M

10M

3

b) Write a Java program to check entered number

is prime or not.

Input

Check prime number

output

1M

3M

1M

5M

4
a) Explain why java is a strongly typed language.

 4M

10M

4

b) Explain steps to execute simple java program

and role of JVM in execution.

Java code-helloworld

Javac hello.java-- compilation

Java hello - execution

output

3M

1M

1M

1M

6M

5
a)

Explain three OOP principles.

i)Inheritance ii)Polymorphism

iii)Encapsulation
2M*3 6M

10M

5

b) Differentiate between narrowing and widening

with proper example.

Narrowing with example

Widening with example

2M

2M
4M

6

a)
Explain following with syntax and example.

i)for-each ii) for loop

For-each loop syntax with example

For loop syntax with example

3M

3M
6M

10M

6
b) Write a Java program to find the average of the

array elements

1M

2M
4M

Input

Code

Output

1M

7
a)

Explain the following operators in Java

a)>>> b)<< c)? d) % e) &=
2M*5 10M 10M

Q. 1 a) Explain breifly primtive type of data types in Java.

Type Size (bits)

byte 8

short 16

int 32

long 64

float 32

double 64

char 16

boolean 1

2.1. int

The first primitive data type we're going to cover is int. Also known as an integer, int type holds

a wide range of non-fractional number values.

int x = 424_242; int y;

2.2. byte

byte is a primitive data type similar to int, except it only takes up 8 bits of memory. This is why

we call it a byte. Because the memory size is so small, byte can only hold the values from -128 (-

27) to 127 (27 – 1).

Here's how we can create byte:

byte b = 100;

byte empty;

2.3. short

The next stop on our list of primitive data types in Java is short.

If we want to save memory and byte is too small, we can use the type halfway

between byte and int: short.

short s = 20_020; short s;

2.4. long

Our last primitive data type related to integers is long.

long is the big brother of int. It's stored in 64 bits of memory, so it can hold a significantly

larger set of possible values.

long l = 1_234_567_890; long l;

2.5. float

We represent basic fractional numbers in Java using the float type. This is a single-precision

decimal number. This means that if we get past six decimal points, the number becomes less

precise and more of an estimate.

float f = 3.145f; float f;

2.6. double

It's stored in 64 bits of memory. This means it represents a much larger range of possible

numbers than float.

double d = 3.13457599923384753929348D; double d;

2.7. boolean

The simplest primitive data type is boolean. It can contain only two values: true or false. It

stores its value in a single bit.

boolean b = true; boolean b;

2.8. char

The final primitive data type to look at is char.

Also called a character, char is a 16-bit integer representing a Unicode-encoded character. Its

range is from 0 to 65,535

char c = 'a'; char c = 65; char c;

Q. 2 b) Explain the logical operator in Java with suitable example.

Types of Logical (Boolean) Operators in Java

In Java, there are three types of logical operators. We have listed them in the below table.

Table: Logical Operators

Operators Meaning

1. && AND operator

2. || OR operator

3. ! NOT operator

Q.2 a) Write a Java program to print following pattern.

public class Main

{

 public static void main(String[] args) {

 int i, j, n=4;

 int k=0;

 for (i = 1; i <= n; i++)

 {

 for (j = i; j >= 1; j--)

 {

 System.out.print(k+" ");

 k++;

 }

 System.out.println();

 }

 }

Q.2 b) Write a program to find factorial of a number 5.

import java.util.Scanner;

public class JavaExample {

 public static void main(String[] args) {

 //We will find the factorial of this number

 int number;

 System.out.println("Enter the number: ");

 Scanner scanner = new Scanner(System.in);

 number = scanner.nextInt();

 long fact = 1;

 int i = 1;

 while(i<=number)

 {

 fact = fact * i;

 i++;

 }

 System.out.println("Factorial of "+number+" is: "+fact);

 }

}

Output:

Enter the number:

6

Factorial of 6 is: 720

Q. 3 a) How Java arrays are initialized and declared ,explain with an example

We declare an array in Java as we do other variables, by providing a type and name:

int[] myArray;

To initialize or instantiate an array as we declare it, meaning we assign values as when we create

the array, we can use the following shorthand syntax:

int[] myArray = {13, 14, 15};

To use the array, we can initialize it with the new keyword, followed by the data type of our

array, and rectangular brackets containing its size:

int[] intArray = new int[10];

intArray[0] = 22;

The following code initializes an integer array with three elements - 13, 14, and 15:

int intArray[] = {13, 14, 15};

One of the most powerful techniques that you can use to initialize your array involves using a for

loop to initialize it with some values.

Let's use a loop to initialize an integer array with values 0 to 9:

int[] intAray = new int[10];

for (int i = 0; i < intArray.length; i++) {

 int_array[i] = i;

}

Q. 3b)Write a Java program to check entered number is prime or not.

public class PrimeExample{

 public static void main(String args[]){

 int i,m=0,flag=0;

 int n=3;//it is the number to be checked

 m=n/2;

 if(n==0||n==1){

 System.out.println(n+" is not prime number");

 }else{

 for(i=2;i<=m;i++){

 if(n%i==0){

 System.out.println(n+" is not prime number");

 flag=1;

 break;

 }

 }

 if(flag==0) { System.out.println(n+" is prime number"); }

 }//end of else

}

}

Output:

3 is prime number

Q. 4 a) Explain why java is a strongly typed language.

Java Is a Strongly Typed Language

It is important to state at the outset that Java is a strongly typed language. Indeed, part of

Java’s safety and robustness comes from this fact. Let’s see what this means. First, every

variable has a type, every expression has a type, and every type is strictly defined. Second,

all assignments, whether explicit or via parameter passing in method calls, are checked for

type compatibility. There are no automatic coercions or conversions of conflicting types as

in some languages. The Java compiler checks all expressions and parameters to ensure that

the types are compatible. Any type mismatches are errors that must be corrected before the

compiler will finish compiling the class.

Q. 4 b) Explain steps to execute simple java program and role of JVM in execution

// Java Program to Illustrate Compilation and Execution

// Stages

// Main class

Class hello {

 // Main driver method

 public static void main(String[] args)

 {

 // Print command

 System.out.print("Hello World");

 }

}

Let us understand the real compilation and execution process.

Step 1: Let us create a file writing simple printing code in a text file and saving it with “.java”

extension.

Step 2: Open the terminal and go to the Desktop directory using the below command as follows.

 cd /Users/mayanksolanki/hello.java

tep 3: Let us try to compile our program with the below command

javac hello.java

Step 4: Lastly run it with the below command as follows:

java hello

output:

Hello World

Q. 5 a) Explain three OOP principles.

i)Inheritance ii)Polymorphism iii)Encapsulation

Encapsulation

This post provides the theoretical explanation of Encapsulation with real-life examples. For

detailed explanation on this topic with java programs refer encapsulation in java with example.

https://beginnersbook.com/2013/05/encapsulation-in-java/

Encapsulation is:

• Binding the data with the code that manipulates it.

• It keeps the data and the code safe from external interference

Looking at the example of a power steering mechanism of a car. Power steering of a car is a

complex system, which internally have lots of components tightly coupled together, they work

synchronously to turn the car in the desired direction. It even controls the power delivered by the

engine to the steering wheel. But to the external world there is only one interface is available and

rest of the complexity is hidden. Moreover, the steering unit in itself is complete and

independent. It does not affect the functioning of any other mechanism.

Inheritance

This post provides the theoretical explanation of inheritance with real-life examples. For detailed

explanation on this topic with java programs refer inheritance with examples and types of

inheritance in java.

• Inheritance is the mechanism by which an object acquires the some/all properties of

another object.

• It supports the concept of hierarchical classification.

For example: Car is a four wheeler vehicle so assume that we have a class FourWheeler and a

sub class of it named Car. Here Car acquires the properties of a class FourWheeler. Other

classifications could be a jeep, tempo, van etc. FourWheeler defines a class of vehicles that have

four wheels, and specific range of engine power, load carrying capacity etc. Car (termed as a

sub-class) acquires these properties from FourWheeler, and has some specific properties, which

are different from other classifications of FourWheeler, such as luxury, comfort, shape, size,

usage etc.

Polymorphism

This post provides the theoretical explanation of polymorphism with real-life examples. For

detailed explanation on this topic with java programs refer polymorphism in java and runtime &

compile time polymorphism.

• Polymorphism means to process objects differently based on their data type.

• In other words it means, one method with multiple implementation, for a certain class of

action. And which implementation to be used is decided at runtime depending upon the

situation (i.e., data type of the object)

• This can be implemented by designing a generic interface, which provides generic

methods for a certain class of action and there can be multiple classes, which provides the

implementation of these generic methods.

Q. 5 b) Differentiate between narrowing and widening with proper example

https://beginnersbook.com/2013/03/inheritance-in-java/
https://beginnersbook.com/2013/05/java-inheritance-types/
https://beginnersbook.com/2013/05/java-inheritance-types/
https://beginnersbook.com/2013/03/polymorphism-in-java/
https://beginnersbook.com/2013/04/runtime-compile-time-polymorphism/
https://beginnersbook.com/2013/04/runtime-compile-time-polymorphism/

• Widening

Widening, also known as upcasting, is a conversion that implictly takes place in the

following situations -

• Widening takes place when a smaller primitive type value is automatically

accommodated in a larger/wider primitive data type.

• Widening takes place when a smaller primitive type value is automatically

accommodated in a larger/wider primitive data type. Let us see an example.

//Java - Example of Widening a smaller primitive value to a larger primitive type

class A

{

public static void main(String... ar)

{

 byte b=10;

 short s= b; //byte value is widened to short

 int i=b; //byte value is widened to int

 long l=b; //byte value is widened to long

 float f=b; //byte value is widened to float

 double d=b; //byte value is widened to double

 System.out.println("short value : "+ s);

 System.out.println("int value : "+ i);

 System.out.println("long value : "+ l);

 System.out.println("float value : "+ f);

 System.out.println("double value : "+ d);

}

}

Output-

short value : 10

int value : 10

long value : 10

float value : 10.0

double value : 10.0

• Narrowing

Narrowing, also known as downcasting/casting, is a conversion that is explictly

performed in the following situations -

• Narrowing a wider/bigger primitive type value to a smaller primitive type value.

Narrowing a bigger primitive value to a small primitive value.

Narrowing is explictly performed when a wider/bigger primitive type value is assigned to a

smaller primitive type value. This also known as downcasting/casting a bigger primitive value

to a small primitive value. Let us see an example.

//Java - Example of narrowing a bigger primitive value to a small primitive value

class A

{

public static void main(String... ar)

{

 double d =10.5;

 byte b = (byte)d; //Narrowing double to byte

 short s= (short)d; //Narrowing double to short

 int i= (int)d; //Narrowing double to int

 long l= (long)d; //Narrowing double to long

 float f= (float)d; //Narrowing double to float

 System.out.println("Original double value : " +d);

 System.out.println("Narrowing double value to short : "+ s);

 System.out.println("Narrowing double value to int : "+ i);

 System.out.println("Narrowing double value to long : "+ l);

 System.out.println("Narrowing double value to float : "+ f);

 System.out.println("Narrowing double value to byte : "+ b);

}

}

Output-

Original double value : 10.5

Narrowing double value to short : 10

Narrowing double value to int : 10

Narrowing double value to long : 10

Narrowing double value to float : 10.5

Narrowing double value to byte : 10

Q. 6 a)) Explain following with syntax and example. i)for-each ii) for loop

The Java for loop is used to iterate a part of the program several times. If the number of iteration

is fixed, it is recommended to use for loop.

for(initialization; condition; increment/decrement){

//statement or code to be executed

}

//Java Program to demonstrate the example of for loop

//which prints table of 1

public class ForExample {

public static void main(String[] args) {

 //Code of Java for loop

 for(int i=1;i<=3;i++){

 System.out.println(i);

 }

}

}

Output :

1

2

3

Java For-each Loop | Enhanced For Loop

for(data_type variable : array | collection){

//body of for-each loop

}

//An example of Java for-each loop

class ForEachExample1{

 public static void main(String args[]){

 //declaring an array

 int arr[]={12,13,14,44};

 //traversing the array with for-each loop

 for(int i:arr){

 System.out.println(i);

 }

 }

}

 Output:

12

12

14

44

Q.6 b)Write a Java program to find the average of the array elements

public class Exercise4 {

public static void main(String[] args) {

 int[] numbers = new int[]{20, 30, 25, 35, -16, 60, -100};

 //calculate sum of all array elements

 int sum = 0;

 for(int i=0; i < numbers.length ; i++)

 sum = sum + numbers[i];

 //calculate average value

 double average = sum / numbers.length;

 System.out.println("Average value of the array elements is : " + average);

 }

}

Sample Output:

Average value of the array elements is : 7.0

Q. 7 a) Explain the following operators in Java

a)>>> b)<< c)? d) % e) &=

Unsigned right shift operator

The unsigned right shift operator '>>>' do not use the sign bit to fill the trailing positions. It

always fills the trailing positions by 0s.

Thus a >>> 1 = 0000 0000 0000 0000 0000 0000 0001 1110

And b >>> 1 = 0111 1111 1111 1111 1111 1111 1110 0010

Bitwise Left Shift Operator (<<)

Left shift operator shifts the bits of the number towards left a specified number of positions. The

symbol for this operator is <<. When you write x<<n, the meaning is to shift the bits of x

towards left n specified positions.

If x=10, then calculate x<<2 value.

Which is 20

 public class OperatorShifting

{

public static void main(String args[])

{

byte x, y;

x=10;

y=-10;

System.out.println("Bitwise Left Shift: x<<2 = "+(x<<2));

System.out.println("Bitwise Right Shift: x>>2 = "+(x>>2));

System.out.println("Bitwise Zero Fill Right Shift: x>>>2 = "+(x>>>2));

System.out.println("Bitwise Zero Fill Right Shift: y>>>2 = "+(y>>>2));

}

}

Output:

Bitwise Left Shift: x<<2 = 40

Bitwise Right Shift: x>>2 = 2

Bitwise Zero Fill Right Shift: x>>>2 = 2

Bitwise Zero Fill Right Shift: y>>>2 = 1073741821

Ternary Operator Java

In Java, the ternary operator is a type of Java conditional operator.

The meaning of ternary is composed of three parts. The ternary operator (? :) consists of three

operands. It is used to evaluate Boolean expressions. The operator decides which value will be

assigned to the variable. It is the only conditional operator that accepts three operand

public class TernaryOperatorExample

{

public static void main(String args[])

{

int x, y;

x = 20;

y = (x == 1) ? 61: 90;

System.out.println("Value of y is: " + y);

y = (x == 20) ? 61: 90;

System.out.println("Value of y is: " + y);

}

}

Output

Value of y is: 90

Value of y is: 61

Modulo or Remainder Operator returns the remainder of the two numbers after division. If you

are provided with two numbers, say A and B, A is the dividend and B is the divisor, A mod B is

there a remainder of the division of A and B. Modulo operator is an arithmetical operator which

is denoted by %.

Input : a = 15, b = 6

// 15%6 means when we divide 15(numerator) by 6(denominator) we get remainder 3//

Output: 3

&= Bitwise AND assignment

Int a=3;

Int b=6;

a&=b; // a= a&b

System.out.println(a); // 2

