

USN

Solution to Internal Assessment Test I – May 2022

Sub: System Software & Compiler Design Sub Code: 18CS61 Branch: CSE

Date: 06/05/2022 Duration: 90 min’s Max Marks: 50 Sem/Sec: 6/CSE(A,B,C) OBE

1. What is Compiler? Explain the various phases of a compiler with a neat diagram. Show

the translations for an assignment statement A=B/C*D-6+E, clearly indicate the output

of each phase.

Solution:

Phases of Compiler

The compilation process is a sequence of various phases. Each phase takes input from its

previous stage, has its own representation of source program, and feeds its output to the next

phase of the compiler.

1.Lexical Analysis

The first phase of scanner works as a text scanner. This phase scans the source code as a stream

of characters and converts it into meaningful lexemes.

2.Syntax Analysis

The next phase is called the syntax analysis or parsing. It takes the token produced by lexical

analysis as input and generates a parse tree (or syntax tree). In this phase, token arrangements

are checked against the source code grammar, i.e. the parser checks if the expression made by

the tokens is syntactically correct.

3.Semantic Analysis

Semantic analysis checks whether the parse tree constructed follows the rules of language.

 Example:-Assignment of values is between compatible data types, and adding string to an integer.

Also, the semantic analyzer keeps track of identifiers, their types and expressions; whether

identifiers are declared before use or not etc. The semantic analyzer produces an annotated syntax

tree as an output.

4.Intermediate Code Generation

After semantic analysis the compiler generates an intermediate code of the source code for the

target machine. It represents a program for some abstract machine. It is in between the high-

level language and the machine language. This intermediate code should be generated in such a

way that it makes it easier to be translated into the target machine code.

5.Code Optimization

The next phase does code optimization of the intermediate code. Optimization can be assumed

as something that removes unnecessary code lines, and arranges the sequence of statements in

order to speed up the program execution without wasting resources (CPU, memory).

6.Code Generation

In this phase, the code generator takes the optimized representation of the intermediate code and

maps it to the target machine language. The code generator translates the intermediate code into

a sequence of (generally) re-locatable machine code. Sequence of instructions of machine code

performs the task as the intermediate code would do.

Symbol Table

It is a data-structure maintained throughout all the phases of a compiler.

1. All the identifier's names along with their types are stored here.

2. The symbol table makes it easier for the compiler to quickly search the identifier record and

retrieve it. The symbol table is also used for scope management.

1 Id1 -----

2 Id2 ----

3 Id3 -----

1 Num1 ----

2 Num2 -----

Translations for an assignment statement A=B/C*D-6+E, clearly indicate the output of

each phase.

1.Lexical analysis:

<id1>< = ><id2>< /><id3><*></><100>< - ><id4,4>

2.Syntax analysis:

 Create the syntax tree:

 =

id1 - id4

 /

 100 *

 id2 id3

3.Semantic analysis: remain same because no mismatch in data type

 =

id1 - id4

 /

 100 *

 id2 id3

4.Intermediate Code Generation

T1=id2 * id3

T2=T1/100

T3=T2-id4

Id1=T3

5.Code Optimization

T1=id2 * id3

T2=T1/100

Id1=T2-id4

6. Code Generation

LDA r1,id2

LDA r2,id3

MUL r1,r1,r2

LDA r3, #100

DIV r1,r1,r3

LDA r4,id4

SUB r1,r1,r4

STR id1,r1

7.Symbol Table

It is a data-structure maintained throughout all the phases of a compiler.

3. All the identifier's names along with their types are stored here.

4. The symbol table makes it easier for the compiler to quickly search the identifier record and

retrieve it. The symbol table is also used for scope management.

1 Id1 -----

2 Id2 ----

3 Id3 -----

4 Id4 -----

1 100 ----

2.

a)Write the algorithm used for eliminating the left recursion.

Solution:-

Left recursion elimination algorithm:

Arrange the nonterminals in some order A1,A2,…,An.

For (each i from 1 to n)

{

For (each j from 1 to i-1)

 {

Replace each production of the form Ai->Ajγ by the production Ai ->δ1 γ | δ2 γ | … |δk γwhere

Aj->δ1 |δ2 | … |δkare all current Aj productions

}

Eliminate left recursion among the Ai-productions

}

b) Eliminate left recursion from the given grammar. A → Ba / Aa/ c B → Bb / Ab / d

Solution:

Step-01:

First let us eliminate the left recursion from A → Ba / Aa / c

Eliminating left recursion from here, we have-

A → BaA’ / cA’

A’ → aA’ / ∈

Now, given grammar becomes-

A → BaA’ / cA’

A’ → aA’ / ∈

B → Bb / Ab / d

Step-02:

Substituting the productions of A in B → Ab, we get the following grammar-

A → BaA’ / cA’

A’ → aA’ / ∈

B → Bb / BaA’b / cA’b / d

Step-03:

Now, eliminating the left recursion from the productions of B, we get the following grammar-

A → BaA’ / cA’

A’ → aA’ / ∈

B → cA’bB’ / dB’

B’ → bB’ / aA’bB’ / ∈

This is the final grammar after eliminating left recursion.

c)Construct transition diagram for keywords like Begin, end, if, then ,else and Identifiers and

Relational operator

Solution:

1.Keywords

2.Identifiers:-

Recognition of Reserved Words and Identifiers

*

*

*

*

*

1. Install the reserved words in the symbol table initially

2. Create separate transition diagrams for each keyword

• identifier-a call to installIDplaces it in the symbol table if it is not already there and

returns a pointer to the symbol-table entry for the lexeme found.

• identifier or reserve word - Function getTokenexamines the symbol table entry for the

lexeme found, and returns - either id or one of the keyword tokens that was initially

installed in the table.

3.Relation operator:

3 a)What are the key problems with top down parsing?

Solution:

Problem with top down parsing:

1. The key problem is that of determining the production to be applied for a nonterminal, say A. Once an A-

production is chosen, the rest of the parsing process consists of "matching" the terminal symbols in the

production body with the input string.

2. This may require backtracking to find the correct A-production tobe applied.

3. Elimination of left recursion of grammar is required

4. Left factoring is required

b)A recursive descent parser for the grammarS→ rXd X→ eb | ea for the input string w=read.

Solution:

1. General category of Parsing Top-Down

2. A recursive-descent parsing program consists of a set of procedures, one for each nonterminal.

3. Execution begins with the procedure for the start symbol, which halts and announces success

if

4. its procedure body scans the entire input string.

5. Choose production rule based on input symbol

6. May require backtracking to correct a wrong choice.

Example: S ->rA d

A ->eb | ea

input: read

(c) What is Token, Lexeme and pattern? Explain with an example.

Solution:

A token is a pair consisting of a token name and an optional attribute value. The token name is an

abstract symbol representing a kind of lexical unit, e.g., a particular keyword, or a sequence of

input characters denoting an identifier. The token names are the input symbols that the parser

processes. We will often refer to a token by its token name.

A patternis a description of the form that the lexemes of a token may take. In the case of a

keyword as a token, the pattern is just the sequence of characters that form the keyword. For

identifiers and some other tokens, the pattern is a more complex structure that is matched by

many strings.

A lexeme is a sequence of characters in the source program that matches the pattern for a token

and is identified by the lexical analyzer as an instance of that token.

Token INFORMAL

DESCRIPTION

SAMPLE LEXEMES

if characters i, f if

else characters e, 1,s, e else

Comparison comparison< or > or <= or >=

or == or ! =

<=

Id letter followed by letters and

digits

Total

Numeral any numeric constant 3.4

Literal anything but ", surrounded by “ “hello world”

 In many programming languages, the following classes cover most or all of the tokens:

1. One token for each keyword. The pattern for a keyword is the same as the keyword itself.

2. Tokens for the operators, either individually or in classes such as the token

3. One token representing all identifiers.

4. One or more tokens representing constants, such as numbers and literal strings.

5. Tokens for each punctuation symbol, such as left and right parentheses, comma, and

semicolon

Example: Consider the following C statement

printf ("Total = %d\n”, score) ;

bothprintf and score are lexemes matching the pattern for token id, and

"Total = %d\n” is a lexeme matching literal.

4.a) Given the grammar: D->T V_L T->int | float V_L ->id,V_L | id

 Construct the predictive parsing table and show the moves made by predictive parser on the

input string w=inta,b,c

Solution:

1.D->T V_L 2.T->int | float 3.V_L ->id,V_L | id

1.Apply left factor

V_L ->id,V_L | id

V_L ->id V_L1

V_L1-> , V_L | 

After left factor the grammar is

1.D->T V_L 2.T->int | float 3. V_L ->id V_L1 4.V_L1 -> , V_L | 

2.First and Follow set

First(D) ={int ,float} Follow (D) ={$}

First(T) ={int ,float} follow (T) ={id}

First(V_L) ={id} follow (V_L) ={$}

First(V_L1)= {,  } follow (V_L1) ={$}

Rule:

1.D->T V_L

2.T->int

3.T->float

4. V_L ->id V_L1

5.V_L1 -> , V_L

6.V_L1 ->

3.Parsing table

NT ACTION

 int float Id , $

D D->T V_L D->T V_L

T T->int T-> float

V_L V_L ->id V_L1

V_L1 V_L1 -> , V_L V_L1 ->

Tracing the string

Stack Input action

$D inta,b,c$ D->T V_L

$V_L T inta,b,c $ T->int

$V_L int inta,b,c$ match

$ V_L1 a,b,c$ V_L ->id V_L1

$ V_L1id a,b,c$ match

$ V_L1 ,b,c$ V_L
1

-> , V_L

$ V_L , ,b,c $ match

$ V_L b,c$ V_L ->id V_L
1

$ V_L1id b,c$ match

$V_L1 ,c $ V_L
1

-> , V_L

$V_L , ,c $ match

$ V_L c$ V_L ->id V_L
1

$ V_L1id c$ match

$ V_L1 $ V_L
1

->

$ $ accept

5 (a) Write the algorithm to find FIRST and FOLLOW for the given grammar

Solution:

To compute First(X) for all grammar symbols X, apply following rules until no more

terminals or ɛ can be added to any First set:

FIRST and FOLLOW sets

 If X is terminal, FIRST(X) = {X}.

 If X → ε is a production, then add ε to FIRST(X).

 If X is a non-terminal, and X → Y1 Y2 … Yk is a production, and ε is in all

of FIRST(Y1), …, FIRST(Yk), then add ε to FIRST(X).

FOLLOW(A) for a nonterminal A is defined as to be the set of terminals a that can appear

immediately to the right of A in some sentential form

That is, the set of terminals a such that there exists a derivation of the form S => αAaβ , for

some α and β

To compute FOLLOW(A) for all nonterminals A, apply the following rules until nothing

can be added to any FOLLOW set

 If $ is the input end-marker, and S is the start symbol, $ ∈ FOLLOW(S).

 If there is a production, A → αBβ, then (FIRST(β) – ε) ⊆ FOLLOW(B).

 If there is a production, A → αB, or a production A → αBβ, where ε∈ FIRST(β), then

FOLLOW(A) ⊆ FOLLOW(B).

 5. (b) Compute FIRST and FOLLOW for the grammar

S ->ACB|Cbb|Ba A ->da|BC B->g|Є C-> h| Є

Solution:

FIRST Set:

FIRST(S) = FIRST(A) U FIRST(B) U FIRST(C) = { d, g, h, Є, b, a}

FIRST(A) = { d } U FIRST(B) = { d, g, h, Є }

FIRST(B) = { g, Є }

FIRST(C) = { h, Є }

FOLLOW Set

FOLLOW(S) = { $ }

FOLLOW(A) = { h, g, $ }

FOLLOW(B) = { a, $, h, g }

FOLLOW(C) = { b, g, $, h }

6 (a)

Show that the following grammar is ambiguous. Write an equivalent unambiguous grammar for the

same. S→S + S | S * S | S ^ S |a

Solution:

Two LMD for same string so grammar is ambiguous

Example:

String a+ a*a can be derived in 2 ways-LMD

Solution:The given grammar is ambiguous because the derivation of string aab can be represented by the following

string:

Unambiguous grammar will be:

1. S → S + A | A

2. A → A * B | B

3. B → C ^ B | C

4. C → a

6. (

b

)

b)Eliminate left factoring from the following grammar:

 S → bSSaaS / bSSaSb / bSb / a

S → a / ab / abc/ abcd

1)S → bSSaaS / bSSaSb / bSb / a

Solution:

S → bSS’ / a

S’ →SaA |b

A→aS|Sb

2)S → a / ab / abc/ abcd

Solution:

S → aS’

S’ → b / bc / bcd / ∈

S → aS’

S’ → bA / ∈

A → c / cd / ∈

 Final grammar is

S → aS’

S’ → bA / ∈

A → cB / ∈

B → d / ∈

7.

(a) Explain the input buffering strategy used in lexical analysis phase.

Solution:

Input Buffering:

• Some efficiency issues concerned with the buffering of input.

• A two-buffer input scheme that is useful when lookahead on the input is necessary to identify

tokens.

• Techniques for speeding up the lexical analyser, such as the use of sentinels to mark the buffer

end.

• There are three general approaches to the implementation of a lexical analyser:

1. Use a lexical-analyser generator, such as Lex compiler to produce the lexical analyser

from a regular expression based specification. In this, the generator provides routines for

reading and buffering the input.

2. Write the lexical analyser in a conventional systems-programming language, using I/O

facilities of that language to read the input.

3. Write the lexical analyser in assembly language and explicitly manage the reading of

input.

Buffer pairs:
• Because of a large amount of time can be consumed moving characters, specialized buffering

techniques have been developed to reduce the amount of overhead required to process an input

character.

• The scheme to be discussed:

• Consists a buffer divided into two N-character halves.

N – Number of characters on one disk block, e.g., 1024 or 4096.

1. Read N characters into each half of the buffer with one system read command.

2. If fewer than N characters remain in the input, then eof is read into the buffer after the

input characters.

3. Two pointers to the input buffer are maintained.

4. The string of characters between two pointers is the current lexeme.

5. Initially both pointers point to the first character of the next lexeme to be found.

6. Forward pointer, scans ahead until a match for a pattern is found.

7. Once the next lexeme is determined, the forward pointer is set to the character at its right

end.

8. If the forward pointer is about to move past the halfway mark, the right half is filled with

N new input characters.

http://1.bp.blogspot.com/-NYKw_BY9dew/TzIYGQ4IDFI/AAAAAAAAAFw/-F0HO0fGFX0/s1600/aa2.JPG

9. If the forward pointer is about to move past the right end of the buffer, the left half is

filled with N new characters and the forward pointer wraps around to the beginning of the

buffer.

Disadvantage of this scheme:

10. This scheme works well most of the time, but the amount of lookahead is limited.

11. This limited lookahead may make it impossible to recognize tokens in situations where

the distance that the forward pointer must travel is more than the length of the buffer.

12. For example: DECLARE (ARG1, ARG2, … , ARGn) in PL/1 program;

13. Cannot determine whether the DECLARE is a keyword or an array name until the

character that follows the right parenthesis.

Sentinels:
1. In the previous scheme, must check each time the move forward pointer that have not

moved off one half of the buffer. If it is done, then must reload the other half.

2. Therefore the ends of the buffer halves require two tests for each advance of the forward

pointer.

3. This can reduce the two tests to one if it is extend each buffer half to hold a sentinel

character at the end.

4. The sentinel is a special character that cannot be part of the source program. (eof

character is used as sentinel).

1. In this, most of the time it performs only one test to see whether forward points to an eof.

2. Only when it reach the end of the buffer half or eof, it performs more tests.

3. Since N input characters are encountered between eof’s, the average number of tests per

input character is very close to 1.

(b) Explain the structure of LEX program.

Solution:

ALEXprogramconsistsofthreeparts:

declarations

%%

translation rules

%%

auxiliaryprocedures

http://3.bp.blogspot.com/-e6EAs0IXKc8/TzIYBmcjemI/AAAAAAAAAFo/KNM5hWVn9DI/s1600/aa1.JPG

Thedeclarationssectionincludesdeclarationsofvariables,constants,and regular definitions.

Thetranslation rulesofalexprogramarestatements oftheform

R1 {action1}

R2{action2}

....……….

Rn{actionn}whereeachRiisregularexpressionandeachactioni,isaprogramfragment

describingwhatactionthelexicalanalyzershouldtakewhenpatternRimatcheslexeme.Typically,acti

oniwillreturncontroltotheparser.InLexactionsarewritteninC;in

general,however,theycanbeinanyimplementationlanguage.

Thethirdsectionholdswhatever auxiliaryproceduresareneededbytheactions.

c)Write a LEX program to recognize valid arithmetic expression. Identifiers in the expression could be

only integers and operators could be + and *. Count the identifiers & operators present and print them

separately.
%{

int count=0,ids=0,bracket=0;

%}

%%

[+] {printf("+");count++;} /*For recognizing the operators*/

[-] {printf("-");count++;}

[*] {printf("*");count++;}

[/] {printf("/");count++;}

[0-9]+ {ids++;} /*For recognizing the identifiers*/

[(] {bracket++;} /*For recognizing the brackets*/

[)] {bracket--;}

%%

int main()

{

printf("Enter the Arithmetic expression:\n");

yylex();

printf("Number of Operators=%d\n",count);

printf("Number of Identifiers=%d\n",ids);

if(count>=ids||bracket!=0||ids==1)

printf("Invalid expression\n");

else

printf("Valid expression\n");

}

	Phases of Compiler
	1.Lexical Analysis
	2.Syntax Analysis
	3.Semantic Analysis
	4.Intermediate Code Generation
	5.Code Optimization
	6.Code Generation
	Symbol Table
	4.Intermediate Code Generation (1)
	5.Code Optimization (1)
	6. Code Generation
	7.Symbol Table

