

Internal Assessment Test 1 – May 2022

Solution

Sub: Web Technology & its Applications Sub Code: 18CS63 Branch: CSE

Date: 10-05-2022 Duration: 90 min’s Max Marks: 50 Sem / Sec: A, B & C OBE

Answer any FIVE FULL Questions MARKS CO RBT

1 (a) Briefly explain the history of markup languages.

HTML books invariably begin with a brief history of HTML. Such a history

might begin with the ARPANET of the late 1960s, jump quickly to the first

public specification of the HTML by Tim Berners-Lee in 1991, and then to

HTML’s codification by the World Wide Web Consortium (better known as

the W3C) in

1997. Some histories of HTML might also tell stories about the Netscape

Navigator and Microsoft Internet Explorer of the early and mid-1990s, a time

when intrepid developers working for the two browser manufacturers ignored

the W3C and brought forward a variety of essential new tags (such as, for

instance, the <table>tag), and features such as CSS and JavaScript, all of

which have been essential to the growth and popularization of the web.

Perhaps in reaction to these manufacturer innovations, in 1998 the W3C froze

the HTML specification at version 4.01. This specification begins by stating:

To publish information for global distribution, one needs a universally

understood language, a kind of publishing mother tongue that all computers

may potentially understand. The publishing language used by the World Wide

Web is HTML

(from HyperText Markup Language).As one can see from the W3C quote,

HTML is defined as a markup language.A markup language is simply a way of

annotating a document in such a way as to make the annotations distinct from

the text being annotated. Markup languages such as HTML, Tex, XML, and

XHTML allow users to control how text and visual elements will be laid out

and displayed. The term comes from the days of print, when editors would

write instructions on manuscript pages that might be revision

instructions to the author or copy editor. You may very well have been the

recipient of markup from caring parents or concerned teachers at various

points in your past,At its simplest, markup is a way to indicate information

about the content that is distinct from the content. This “information about

content” in HTML is implemented via tags (or more formally, HTML

elements, but more on that later). The markup in Figure 2.1 consists of the red

text and the various circles and arrows and the little yellow sticky notes.

HTML does the same thing but uses textual tags. In addition to specifying

“information about content” many markup languages are able to encode

information how to display the content for the end user. These presentation

semantics can be as simple as specifying a bold weight font for certain words,

and were a part of the earliest HTML specification. Although combining

semantic markup with presentation markup is no longer permitted in

HTML5,“formatting the content” for display remains a key reason why HTML

was widely adopted.

[05]

CO1 L2

 (b) Write short notes on XHTML and HTML5.

Instead of growing HTML, the W3C turned its attention in the late 1990s to a

new specification called XHTML 1.0, which was a version of HTML that used

stricter XML (extensible markup language) syntax rules (see Background

next). But why was “stricter” considered a good thing? Perhaps the best

[05] CO1 L2

analogy might

be that of a strict teacher. When one is prone to bad habits and is learning

something difficult in school, sometimes a teacher who is more scrupulous

about the need to finish daily homework may actually in the long run be more

beneficial than a more permissive and lenient teacher. As the web evolved in

the 1990s, web browsers evolved into quite permissive and lenient programs.

They could handle sloppy HTML, missing or malformed tags, and other

syntax errors. However, it was somewhat unpredictable how each browser

would

handle such errors. The goal of XHTML with its strict rules was to make page

rendering more predictable by forcing web authors to create web pages

without syntax errors. To help web authors, two versions of XHTML were

created: XHTML 1.0 Strict and XHTML 1.0 Transitional. The strict version

was meant to be rendered by a browser using the strict syntax rules and tag

support described by the W3C XHTML 1.0 Strict specification; the

transitional recommendation is a more forgiving flavor of XHTML, and was

meant to act as a temporary transition to the eventual global adoption of

XHTML Strict. The payoff of XHTML Strict was to be predictable and

standardized web documents. Indeed, during much of the 2000s, the focus in

the professional web development community was on standards: that is, on

limiting oneself to the W3C specification for XHTML. A key part of the

standards movement in the web development community of the 2000s was the

use of HTML validators (see Figure 2.2) as a means of verifying that a web

page’s markup followed the rules for XHTML Transitional or Strict. Web

developers often placed proud images on their sites to tell the world at large

that their site followed XHTML rules (and also to communicate their support

for web standards).

Yet despite the presence of XHTML validators and the peer pressure from

book authors, actual web browsers tried to be forgiving when encountering

badly formed HTML so that pages worked more or less how the authors

intended regardless of whether a document was XHTML valid or not. In the

mid-2000s, the W3C presented a draft of the XHTML 2.0 specification.

It proposed a revolutionary and substantial change to HTML. The most

important

was that backwards compatibility with HTML and XHTML 1.0 was dropped.

Browsers would become significantly less forgiving of invalid markup. The

XHTML 2.0 specification also dropped familiar tags such as , <a>,

, and numbered headings such as <h1>. Development on the XHTML 2.0

specification dragged on HTML5

At around the same time the XHTML 2.0 specification was being developed, a

group of developers at Opera and Mozilla formed the WHATWG (Web

Hypertext Application Technology Working Group) group within the W3C.

This group was not convinced that the W3C’s embrace of XML and its

abandonment of backwards-compatibility was the best way forward for the

web. Thus the WHATWG charter announced:

“The Web Hypertext Applications Technology working group therefore

intends to address the need for one coherent development environment for

Web applications, through the creation of technical specifications that are

intended to be implemented in mass-market Web browsers.” That is,

WHATWG was focused less on semantic purity and more on the web as it

actually existed. As well, unlike the large membership of the W3C, the

WHATWG group was very small and led by Ian Hickson. As a consequence,

the work at WHATWG progressed quickly, and eventually, by 2009, the W3C

stopped work on XHTML 2.0 and instead adopted the work done by

WHATWG and named it HTML5.

There are three main aims to HTML5:

1. Specify unambiguously how browsers should deal with invalid markup.

2. Provide an open, nonproprietary programming framework (via JavaScript)

for creating rich web applications.

3. Be backwards compatible with the existing web. While parts of the HTML5

are still being finalized, all of the major browser manufacturers have at least

partially embraced HTML5. Certainly not all browsers

and all versions support every feature of HTML5. This is in fact by design.

HTML in HTML5 is now a living language: that is, it is a language that

evolves and develops over time. As such, every browser will support a

gradually increasing subset of HTML5 capabilities. In late September 2012,

the W3C announced that they

planned to have the main elements of the HTML5 specification moved to

Recommendation status (i.e., the specification would be finalized in terms of

features) by late 2014, and the less stable parts of HTML5 moved to HTML5.1

(with a tentative completion date of 2016). This certainly creates

complications for web developers. Does one only use HTML elements that are

universally supported by all browsers, or all the newest elements supported

only by the most recent browsers, or . . . something in between?

This is an interesting question as well for the authors of this textbook. Should

we cover only what is supported by the XHTML 1.0 standard or should we

cover more of the features in HTML5?

In this text, we have taken the position that HTML5 is not only the future but

the present as well. As such, this book assumes that you are using an HTML5

browser. This is not an unreasonable assumption since as of February 2013, a

very large majority of web requests are from browsers that have at least partial

support

of the main features of HTML5

2 (a) Explain the following HTML5 tags with example.

 (i) headings (ii) figure and figure caption (iii)Inline elements

 (iv)image (v) division

(i) headings

(ii) figure and figure caption

[10] CO2 L2

iii)Inline Elements

iv)Image

v) <div>
This element is a container element and is used to create a logical grouping of

content (text and other HTML elements, including containers such as <p> and

other <div> elements). The <div> element has no intrinsic presentation; it is

frequently used in contemporary CSS-based layouts to mark out sections.

Example:

<div>

<p>By Ricardo on <time>September 15, 2015</time></p>

<p>Easy on the HDR buddy.</p>

</div>

<div>

<p>By Susan on <time>October 1, 2015</time></p>

<p>I love Central Park.</p>

</div>

<p><small>Copyright © 2015 Share Your Travels</small></p>

</body>

3 (a) List the different selectors available in CSS and explain in detail

1 Element Selectors

Element selectors select all instances of a given HTML elementYou

can select all elements by using the universal element selector,

which is the * (asterisk) character. You can select a group of

elements by separating the different element names with commas.

This is a sensible way to reduce the size and complexity of your CSS

files, by combining multiple identical rules into a single rule.

Class Selectors

A class selector allows you to simultaneously target different HTML elements

regardless of their position in the document tree. If a series of HTML elements

have been labeled with the same class attribute value, then you can target them

for styling by using a class selector, which takes the form: period (.) followed by

the class name.

Listing 3.5 illustrates an example of styling using a class selector. The result in

the browser is shown in Figure 3.4.

then you can target it for styling by using an id selector, which takes the form:

pound/hash (#) followed by the id name. Listing 3.6 illustrates an example of

styling using an id selector. The result in the browser is shown in Figure 3.5.

[10] CO3 L2

3 Id Selectors

An id selector allows you to target a specific element by its id

attribute regardless of its type or position. If an HTML element has

been labeled with an id attribute, then you can target it for styling by

using an id selector, which takes the form: pound/hash (#) followed

by the id name.

4 Attribute Selectors

An attribute selector provides a way to select HTML elements

either by the presence of an element attribute or by the value of an

attribute. This can be a very powerful technique, but because of

uneven support by some of the browsers, not all web authors have

used them. Attribute selectors can be a very helpful technique in the

styling of hyperlinks and images. For instance, perhaps we want to

make it more obvious to the user when a pop-up tooltip is available

for a link or image. We can do this by using the following attribute

selector: [title] { … } This will match any element in the document

that has a title attribute.

5 Pseudo-Element and Pseudo-Class Selectors
A pseudo-element selector is a way to select something that does not exist

explicitly as an element in the HTML document tree but which is still a

recognizable selectable object. For instance, you can select the first line or first

letter of any HTML element using a pseudo-element selector. A pseudo-class

selector does apply to an HTML element, but targets either a particular state or,

in CSS3, a variety of family relationships. Table 3.5 lists some of the more

common pseudo-class and pseudoelement selectors. The most common use of

this type of selectors is for targeting link states. By default, the browser displays

link text blue and visited text links purple. Listing 3.8

illustrates the use of pseudo-class selectors to style not only the visited and

unvisited link colors, but also the hover color, which is the color of the link when

the mouse is over the link. Do be aware that this state does not occur on touch

screen devices.

Note the syntax of pseudo-class selectors: the colon (:) followed by the pseudo-

class selector name. Do be aware that a space is not allowed after the colon.

Believe it or not, the order of these pseudo-class elements is important. The :link

and :visited pseudo-classes should appear before the others. Some developers

use a mnemonic to help them remember the order. My favorite is “Lord Vader,

Former Handle Anakin” for Link, Visited, Focus, Hover, Active.

.

6 Contextual Selectors

A contextual selector (in CSS3 also called combinators) allows you

to select elements based on their ancestors, descendants, or siblings.

That is, it selects elements based on their context or their relation to

other elements in the document tree. While some of these contextual

selectors are used relatively infrequently, almost all

web authors find themselves using descendant selectors.A

descendant selector matches all elements that are contained within

another element. The character used to indicate descendant selection

is the space character.

Selector Matches Example

Descendant A specified element that is contained somewhere within

another specified element. div p Selects a <p> element that is

contained somewhere within a <div> element. That is, the <p> can

be any descendant, not just a child. Child A specified element that is

a direct child of the specified element.

div>h2

Selects an <h2> element that is a child of a <div> element.

Adjacent sibling A specified element that is the next sibling (i.e.,

comes directly after) of the specified element.

h3+p

Selects the first <p> after any <h3>. General sibling A specified

element that shares the same parent as the specified element.

h3~p

Selects all the <p> elements that share the same parent as the <h3>.

4 (a) Explain Location of styles with examples.

CSS style rules can be located in three different locations.

1. Inline Styles

Inline styles are style rules placed within an HTML element via the style

attribute,An inline style only affects the element it is defined within and

overrides any other style definitions for properties used in the inline style.

Using inline styles is generally discouraged since they increase bandwidth and

decrease maintainability (because presentation and content are intermixed and

because it can be difficult to make consistent inline style changes across

multiple files.

Internal styles example:

<h1>Share Your Travels</h1>

<h2>style="font-size: 24pt"Description</h2>

...

<h2>style="font-size: 24pt; font-weight: bold;">Reviews</h2>

2. Embedded Style Sheet

Embedded style sheets (also called internal styles) are style rules placed

within the <style> element (inside the <head> element of an HTML

document), While better than inline styles, using embedded styles is also by

and large discouraged. Since each HTML document has its own <style>

element, it is more difficult to consistently style multiple documents when

using embedded styles.

Just as with inline styles, embedded styles can, however, be helpful when

quickly testing out a style that is used in multiple places within a single HTML

document.

 Example:

<title>Share Your Travels -- New York - Central Park</title>

<style>

h1 { font-size: 24pt; }

h2 {

font-size: 18pt;

font-weight: bold;

}

</style>

[05] CO3 L2

</head>

<body>

<h1>Share Your Travels</h1>

<h2>New York - Central Park</h2>

...

3. External Style Sheet

External style sheets are style rules placed within a external text file with the

.css extension. This is by far the most common place to locate style rules

because it provides the best maintainability. When you make a change to an

external style sheet, all HTML documents that reference that style sheet will

automatically use the updated version. The browser is able to cache the

external style sheet, which can improve the performance of the site as well.

To reference an external style sheet, you must use a <link> element (within the

<head> element),We can link to several style sheets at a time; each linked

style sheet will require its own <link> element.

Example:

<head lang="en">

<meta charset="utf-8">

<title>Share Your Travels -- New York - Central Park</title>

<link rel="stylesheet" href="styles.css" />

</head>

 (b) Explain how CSS styles interact.

1. Inheritance

Inheritance is the first of these cascading principles. Many (but not all) CSS

properties affect not only themselves but their descendants as well. Font, color,

list, and text properties are inheritable; layout, sizing, border, background,

and spacing properties are not.

In the below example, without using inherit keyword, we have a single style

rule that styles all the <div> elements. The <p> and <time> elements within

the <div> inherit the bold font-weight property but not the margin or border

styles.

Example:

div {

font-weight: bold;

margin: 50px;

border: 1pt solid green;

}

p {

border: inherit;

margin: inherit;

}

<h3>Reviews</h3>

<div>

<p>By Ricardo on <time>September 15, 2015</time></p>

<p>Easy on the HDR buddy.</p>

</div>

<hr/>

<div>

<p>By Susan on <time>October 1, 2015</time></p>

<p>I love Central Park.</p>

[05] CO3 L2

</div>

<hr/>

However, it is possible to tell elements to inherit properties that are normally

not inheritable by using the <p> elements nested within the <div> elements

now inherit the border and margins of their parent.

2. Specificity

Specificity is how the browser determines which style rule takes precedence

when more than one style rule could be applied to the same element. In CSS,

the more specific the selector, the more it takes precedence (i.e., overrides the

previous definition).

3. Location

When inheritance and specificity cannot determine style precedence, the

principle of location will be used. The principle of location is that when rules

have the same specificity, then the latest are given more weight.

For instance, an inline style will override one defined in an external author

style sheet or an embedded style sheet.

In the above example paragraph uses red color

5 (a) Explain the need of cascade in CSS. Explain the 3 principles of cascade with

suitable CSS script segments.

The “Cascade” in CSS refers to how conflicting rules are handled. The visual

metaphor behind the term cascade is that of a mountain stream progressing

downstream over rocks (and not that of a popular dishwashing detergent). The

downward movement of water down a cascade is meant to be analogous to how

a given style rule will continue to take precedence with child elements (i.e.,

elements “below” in a document outline as shown in Figure 3.3).

CSS uses the following cascade principles to help it deal with conflicts:

inheritance, specificity, and location.

3.5.1 Inheritance

Inheritance is the first of these cascading principles. Many (but not all) CSS

properties affect not only themselves but their descendants as well. Font, color,

list, and text properties (from Table 3.1) are inheritable; layout, sizing, border,

background, and spacing properties are not.

Figures 3.9 and 3.10 illustrate CSS inheritance. In the first example, only some

of the property rules are inherited for the <body> element. That is, only the body

element (thankfully!) will have a thick green border and the 100-px margin;

[05] CO3 L2

however, all the text in the other elements in the document will be in the Arial

font and colored red.

In the second example in Figure 3.10, you can assume there is no longer the

body styling but instead we have a single style rule that styles all the <div>

elements. The <p> and <time> elements within the <div> inherit the bold font-

weight property but not the margin or border styles. However, it is possible to

tell elements to inherit properties that are normally not inheritable, as shown in

Figure 3.11. In comparison to Figure 3.10, notice how the <p> elements nested

within the <div> elements now inherit the border and margins of their parent.

3.5.2 Specificity

Specificity is how the browser determines which style rule takes precedence

when more than one style rule could be applied to the same element. In CSS, the

more specific the selector, the more it takes precedence (i.e., overrides the

previous definition).

As you can see in Figure 3.12, class selectors take precedence over element

selectors, and id selectors take precedence over class selectors. The precise

algorithm the browser is supposed to use to determine specificity is quite

complex.6 A simplified version is shown in Figure 3.13.

3.5.3 Location

Finally, when inheritance and specificity cannot determine style precedence, the

principle of location will be used. The principle of location is that when rules

have the same specificity, then the latest are given more weight. For instance, an

inline style will override one defined in an external author style sheet or an

embedded style sheet.

5 (b) Explain the role of and HTML tags with syntax and examples.

■ Unordered lists. Collections of items in no particular order; these are by

[05] CO1 L2

default rendered by the browser as a bulleted list. However, it is common in CSS

to style unordered lists without the bullets. Unordered lists have become

the conventional way to markup navigational menus.

■ Ordered lists. Collections of items that have a set order; these are by default

rendered by the browser as a numbered list.

6 (a) Explain different form widgets created with the <input> tag.

A <form> element, which is a container for other elements that represent the

various input elements within the form as well as plain text and almost any other

HTML element.

Most forms need to gather text information from the user. Whether it is a search

box, or a login form, or a user registration form, some type of text input is

usually necessary. Table 4.3 lists the different text input controls.

While some of the HTML5 text elements are not uniformly supported by all

browsers, they still work as regular text boxes in older browsers.

[05] CO2 L2

 (b) Write a HTML5 program for the following table. [05] CO3 L3

<!DOCTYPE html>

<html>

<head>

 <title>Table Program</title>

</head>

<body>

 <table border="2">

 <tr>

 <th rowspan="3">DAY</th><th colspan="3">SEMINAR</th>

 </tr>

 <tr>

 <th colspan="2">SCHEDULE</th><th rowspan="2">TOPIC</th>

 </tr>

 <tr><th>BEGIN</th><th>END</th></tr>

 <tr>

 <td rowspan="2">Monday</td>

 <td rowspan="2">8.00 am</td>

 <td rowspan="2">5.00 pm</td>

 <td>Introduction to XML</td>

 </tr>

 <tr><td>Validity: DTD & NG</td></tr>

 <tr><td rowspan="3">TUESDAY</td><td>11.00 am</td><td>2.00 pm</td><td

rowspan="2">XPAT4</td></tr>

 <tr><td>11.00 pm</td><td>2.00 pm</td></tr>

 <tr><td>2.00 pm</td><td>5.00 pm</td><td>XSL Transformations</td></tr>

 <tr><td>WEDNESDAY</td><td>8.00 am</td><td>5.00 pm</td><td>XSL Formatting

Objects</td></tr>

 </table>

</body>

</html>

