

			Internal	Assesment Te	est - I				
Sub:	ELECTROMAGNETIC FIELD THEORY						Code:	18EE45	
Date:	11/07/2022	Duration:	90 mins	Max Marks:	50	Sem:	4	Branch:	EEE
	Ans	wer FIVE FU	JLL Quest	ions. Mention ι	inits whe	erever n	ecessa	ry.	

	Answer TVLT OLL Questions, wention units wherever necessary.			
			OBE	
		Marks	CO	RBT
1 (a)	Transform to cylindrical co-ordinates, the vector $\mathbf{F} = 10 \mathbf{a}_x - 8 \mathbf{a}_y + 6 \mathbf{a}_z$ at point P(10,-8,6)	[05]	CO1	L3
1 (b)	Obtain the formula to convert a vector from cylindrical system of co-ordinate to rectangular system of co-ordinate.	[05]	CO1	L3
	State and explain Coulomb's law of force between two charges. Define electric field intensity. Deduce the expression for electric field intensity due to a system of N charges.	[05] [05]	CO1 CO1	L1 L2
3	Derive Maxwell's first equation of electrostatics in point form. Also state and	[10]	CO1	L2
	prove Gauss's divergence theorem.			
4 (a)	 Determine electric flux density caused at P(6,8,-10) due to i) a point charge of 30 mC at origin. ii) a surface charge with ρ_s = 57.2 μC/m² on a plane Z = -9 m. 	[05]	CO2	L3
4 (1.)		F0.51	000	Τ. Ο
4 (b)	Derive the expression for potential due to a system of N number of charges.	[05]	CO2	L3
5	Given that $\mathbf{D} = z\rho (\cos \phi)^2 \mathbf{a}_z \text{ C/m}^2$, calculate charge density at $(1, \frac{\pi}{4}, 3)$ and	[10]	CO2	L3
	the total charge enclosed by the cylinder of radius 1 m with $-2m \le z \le 2m$ using volume integral. Verify the result using Divergence theorem.			
6 (a)	For a potential $= 2x^2y - 5z$, determine the electric field intensity and electric flux density at (-4, 3, 6).	[03]	CO2	L3
6 (b)	Define Potential difference and Potential. Also Establish the relationship between electric field intensity and electric scalar potential.	[07]	CO2	L2
7 (a)	Determine the work done in carrying a charge of $-2 C$ form $(2,1,-1)$ to $(8,2,-1)$ in the electric field $E = y a_x + x a_y V/m$ through the path given by the parabola $x = 2 y^2$.	[06]	CO2	L2
7 (b)	Derive an expression for work done in moving a point charge Q in the presence of an electric field \mathbf{E} .	[04]	CO2	L3
8	Derive the expression for potential and electric field due to an electric dipole.	[10]	CO3	L2

CI CCI HoD

			Interne	al Assesment Test -	1				
Sub:	ELECTROMAGNETIC FIELD THEORY							de:	18EE45
Date:	11/07/2022	Duration:	90 mins	Max Marks:	50	Sem:	4 Br	anch:	EEE
Date:	11/0//2022			stions. Mention uni	1				

Marks CO RBT

1 (a) Transform to cylindrical co-ordinates, the vector $F = 10 a_x - 8a_y + 6a_z$ at [05] COI L3

point P(10,-8,6)
$$\beta = 12.800$$
, $\phi = 321.34$, $Z = 6 - (2)$

$$\begin{bmatrix}
6 \\
7 \\
7
\end{bmatrix} = \begin{bmatrix}
6 \\
6
\end{bmatrix} = \begin{bmatrix}
6 \\
6
\end{bmatrix} = \begin{bmatrix}
12.800 \\
6
\end{bmatrix} = \begin{bmatrix}
12.8$$

1 (b) Obtain the formula to convert a vector from cylindrical system of co-ordinate to rectangular system of co-ordinate.

$$\begin{bmatrix}
A_{2} \\
A_{3}
\end{bmatrix} = \begin{bmatrix}
cos \phi \\
cos \phi
\end{bmatrix} \begin{bmatrix}
A_{1} \\
A_{2}
\end{bmatrix}$$
(5)

2 (a) State and explain Coulomb's law of force between two charges.

[05] CO1 LI

2 (b) Define electric field intensity. Deduce the expression for electric field intensity L2 [05] COI due to a system of N charges.

Definition: (2)

E due le N charges: (3)
$$\vec{E} = \sum_{i=1}^{N} \frac{Q}{4\pi\epsilon_0 |R|^3}$$

Derive Maxwell's first equation of electrostatics in point form. Also state and [10] CO1 L2 3 prove Gauss's divergence theorem.

4 (a) Determine electric flux density caused at P(6,8,-10) due to

[05] CO2 L3

i) a point charge of 30 mC at origin.

$$\vec{R} = b\vec{a}\vec{x} + b\vec{a}\vec{y} - 1\cos^2(1)$$

$$\vec{B} = 5.0b\vec{a}\vec{x} + b \cdot \pi \vec{a}\vec{y} - 8.44\vec{a}\vec{z} + \mu c/m^2 \qquad (2)$$

a surface charge with $\rho_s = 57.2 \,\mu\text{C/m}^2$ on a plane Z = -9 m. ii)

$$\vec{B} = -28.6 \, \vec{a_z} \quad \beta c_m^2 \quad \vec{a_n} = -\vec{a_z} \quad (1)$$

$$\vec{B} = \frac{g_z}{2} \vec{a_n} \quad (1)$$

Given that
$$D = z\rho (\cos \phi)^2 a_z C/m^2$$
, calculate charge density at $(1, \frac{\pi}{4}, 3)$ and [10] CO2 L3 the total charge enclosed by the cylinder of radius 1 m with $-2m \le z \le 2m$ using volume integral. Verify the result using Divergence theorem.

6 (a) For a potential =
$$2x^2y - 5z$$
, determine the electric field intensity and electric [03] CO2 1.3 flux density at (-4, 3, 6).

$$\vec{E} = -\left[47y\,\vec{n}\vec{\lambda} + 2x^2\vec{n}\vec{y} - 5\,\vec{n}\vec{z}\right] = 48\,\vec{n}\vec{\lambda} - 35\,\vec{n}\vec{y} + 5\,\vec{n}\vec{z} \quad V/m \quad \vec{E}$$

$$\vec{B} = 424.99\,\vec{n}\vec{\lambda} - 283.33\,\vec{n}\vec{y} + 44.27\,\vec{n}\vec{z} \quad pc/m^2 - Ci)$$

6 (b) Define Potential difference and Potential. Also Establish the relationship between electric field intensity and electric scalar potential.

intensity and electric scalar potential.

Definition
$$V - (1)$$
 $V_{AB} - (1)$
 $V_{AB} - (5)$

7 (a) Determine the work done in carrying a charge of
$$-2 C$$
 form $(2,1,-1)$ to $(8,2,-1)$ in the electric field $E = y a_x + x a_z V/m$ through the path given by the parabola $x = 2 y^2$.

$$W = -2 \left\{ \int y \, dn + \int n \, dy \right\} = -2 \left\{ \int \frac{1}{2} \, dn + \int ay^2 \, dy \right\} - (4)$$

$$W = -28 J \qquad -(1)$$

In for potential and electric field due to all electric dispose.

(2)

Pipele

$$V = \frac{\Delta}{4\pi \epsilon} \left(\frac{R_2 - R_1}{R_1 R_2} \right) - (1)$$
 $V = \frac{\Delta}{4\pi \epsilon} \left(\frac{R_2 - R_1}{R_1 R_2} \right) - (1)$
 $V = \frac{\Delta}{4\pi \epsilon} \left(\frac{R_2 - R_1}{R_1 R_2} \right) - (1)$
 $V = \frac{\Delta}{4\pi \epsilon} \left(\frac{R_2 - R_1}{R_1 R_2} \right) - (1)$
 $V = \frac{\Delta}{4\pi \epsilon} \left(\frac{R_2 - R_1}{R_1 R_2} \right) - (1)$
 $V = \frac{\Delta}{4\pi \epsilon} \left(\frac{R_2 - R_1}{R_1 R_2} \right) - (1)$
 $V = \frac{\Delta}{4\pi \epsilon} \left(\frac{R_2 - R_1}{R_1 R_2} \right) - (1)$
 $V = \frac{\Delta}{4\pi \epsilon} \left(\frac{R_2 - R_1}{R_1 R_2} \right) - (1)$
 $V = \frac{\Delta}{4\pi \epsilon} \left(\frac{R_2 - R_1}{R_1 R_2} \right) - (1)$
 $V = \frac{\Delta}{4\pi \epsilon} \left(\frac{R_2 - R_1}{R_1 R_2} \right) - (1)$
 $V = \frac{\Delta}{4\pi \epsilon} \left(\frac{R_2 - R_1}{R_1 R_2} \right) - (1)$
 $V = \frac{\Delta}{4\pi \epsilon} \left(\frac{R_2 - R_1}{R_1 R_2} \right) - (1)$
 $V = \frac{\Delta}{4\pi \epsilon} \left(\frac{R_2 - R_1}{R_1 R_2} \right) - (1)$

CWB

[07] CO2 L2

Coulomb's law:

The force between two very small objects separated in Vacuum or free space by a distance which is large componed to their size is proportional to the charge on each and inversely proportional to the square of the distance between them.

Force exerted on
$$Q_{1}$$
 Q_{1} Q_{2} Q_{1} Q_{2} Q_{3} Q_{4} Q_{4} Q_{4} Q_{4} Q_{5} $Q_{$

Force exerted on
$$a_{1}$$
 by a_{1}

$$\overrightarrow{F}_{12} = \frac{1}{4\pi\epsilon_{0}} \frac{a_{1}a_{2}}{|R_{12}|^{3}} \stackrel{R_{12}}{\longrightarrow} F_{0}$$

Force exerted on a_{1} by a_{2}

$$\overrightarrow{F}_{21} = \frac{1}{4\pi\epsilon_{0}} \frac{a_{1}a_{2}}{|R_{21}|^{3}} \stackrel{R}{\longrightarrow} \stackrel{R}{\longrightarrow} F_{21}$$

$$\overrightarrow{F}_{12} = - F_{21}$$

Grans's low:

$$\psi = Q_{enc} \Rightarrow \emptyset \quad \overrightarrow{D} \cdot \overrightarrow{ds} = Q_{enc} \rightarrow 0$$
Integral form of Gauss's low:
$$0 \quad \overrightarrow{D} \cdot \overrightarrow{D} \cdot \overrightarrow{ds} = 0 \quad \overrightarrow{D} \cdot \overrightarrow{D} \cdot \overrightarrow{D} \cdot \overrightarrow{D} \cdot \overrightarrow{D}$$

$$0 \quad \overrightarrow{D} \cdot \overrightarrow{D$$

Divergence of a voctor 7:

The divergence of the vector flux density **A** is the outflow of flux from a small closed surface per unit volume as the volume shrinks to zero.

For electric effux dencity vector \overrightarrow{D} , by definition of divergence,

By definition of volume change density,

$$\int_{V} = \lim_{\Delta V \to 0} \frac{Q}{\Delta V} \to \Phi$$

From (1), (3) + (4)

$$\overrightarrow{\nabla} \cdot \overrightarrow{D} = \lim_{\Delta V \to 0} \underbrace{\Delta V} = \int_{V} V$$

$$\overrightarrow{\nabla} \cdot \overrightarrow{D} = \int_{V} V + G$$

Point form of Gauss's law

Maxwell's first equation of Electrostatics

4.b.Potential due to a system of 'N' number of point <u>charges:</u>

$$R_{1} = |R_{1}|$$

$$R_{2} = |R_{3}|$$

$$R_{3} = |R_{3}|$$

$$R_{4} = |R_{4}|$$

$$R_{5} = |R_{4}|$$

$$R_{7} = |R_{1}|$$

$$R_{8} = |R_{1}|$$

$$R_{1} = |R_{1}|$$

$$R_{2} = |R_{3}|$$

$$R_{4} = |R_{4}|$$

$$R_{5} = |R_{1}|$$

$$R_{7} = |R_{1}|$$

$$R_{1} = |R_{1}|$$

$$R_{1} = |R_{1}|$$

$$R_{2} = |R_{3}|$$

$$R_{4} = |R_{1}|$$

$$R_{4} = |R_{1}|$$

$$R_{1} = |R_{1}|$$

$$R_{3} = |R_{3}|$$

$$R_{4} = |R_{1}|$$

$$R_{1} = |R_{1}|$$

$$R_{3} = |R_{3}|$$

$$R_{4} = |R_{1}|$$

$$R_{1} = |R_{1}|$$

$$R_{3} = |R_{3}|$$

$$R_{4} = |R_{1}|$$

$$R_{5} = |R_{1}|$$

$$R_{4} = |R_{1}|$$

$$R_{5} = |R_{1}|$$

$$R_{7} = |R_{1}|$$

$$R_{1} = |R_{1}|$$

$$R_{3} = |R_{3}|$$

$$R_{4} = |R_{1}|$$

$$R_{1} = |R_{1}|$$

$$R_{3} = |R_{3}|$$

$$R_{4} = |R_{4}|$$

$$R_{5} = |R_{1}|$$

$$R_{7} = |R_{1}|$$

$$R_{1} = |R_{1}|$$

$$R_{3} = |R_{3}|$$

$$R_{4} = |R_{4}|$$

$$R_{5} = |R_{1}|$$

$$R_{7} = |R_{1}|$$

$$R_{8} = |R_{1}|$$

$$R_{1} = |R_{2}|$$

$$R_{1} = |R_{2}|$$

$$R_{1} = |R_{2}|$$

$$R_{1} = |R_{2}|$$

$$R_{2} = |R_{3}|$$

$$R_{3} = |R_{4}|$$

$$R_{4} = |R_{4}|$$

$$R_{5} = |R_{5}|$$

$$R_{7} = |R_{1}|$$

$$R_{8} = |R_{1}|$$

$$R_{1} = |R_{2}|$$

$$R_{1} = |R_{2}|$$

$$R_{1} = |R_{2}|$$

$$R_{2} = |R_{3}|$$

$$R_{3} = |R_{4}|$$

$$R_{4} = |R_{4}|$$

$$R_{4} = |R_{4}|$$

$$R_{5} = |R_{5}|$$

$$R_{7} = |R_{1}|$$

$$R_{8} = |R_{1}|$$

$$R_{1} = |R_{2}|$$

$$R_{1} = |R_{2}|$$

$$R_{2} = |R_{3}|$$

$$R_{3} = |R_{4}|$$

$$R_{4} = |R_{4}|$$

$$R_{4} = |R_{4}|$$

$$R_{4} = |R_{4}|$$

$$R_{5} = |R_{5}|$$

$$R_{7} = |R_{4}|$$

$$R_{8} = |R_{1}|$$

$$R_{8} = |R_{1}|$$

$$R_{1} = |R_{2}|$$

$$R_{2} = |R$$

6.b.

The potential difference V is defined as the work done (by an external source) in moving a unit positive charge from one point to another in an electric field.

The potential difference VAB may be regarded as the potential at B with reference to A

$$V_{AB} = -\int_{B} \vec{E} \cdot d\vec{k}$$

The potential at any point is the potential difference between that point and a chosen point (or reference point) at which the potential is zero.

VB and VA are the potentials (or absolute potentials) at B and A, respectively.

$$V_{A} = V_{A\infty} = -\int_{\infty}^{A} \vec{E} \cdot \vec{d} \vec{l}$$

$$V_{B} = V_{B\infty} = -\int_{\infty}^{B} \vec{E} \cdot \vec{d} \vec{l}$$

Show that electric field is the negative gradient of potential for electrostatics (or) Derive the relation between electric field intensity and electric potential

$$V_{BA} = -\int_{A}^{B} \vec{E} \cdot \vec{dl}$$

$$E \omega_1 \theta = -\frac{dv}{dt}$$

Direction & E, q= - qL

$$\vec{E} = -\frac{dv}{dt}\vec{a}\vec{c}$$

Energy expended in moving a point charge in an electric field - (Work Done)

Hork done = Force x Displacement

Work done through displacement $dW = \overrightarrow{F} \cdot dU$ Force on Q due to \overrightarrow{E} , $\overrightarrow{F} = Q\overrightarrow{E}$ $f_{applied} = -\overrightarrow{F} = -Q\overrightarrow{E}$ Work done through $d\overrightarrow{U}$, $dW = -Q\overrightarrow{E} \cdot d\overrightarrow{U}$

Work done through length
$$W = \int dW = \int a \vec{E} \cdot d\vec{l} = -a \int \vec{E} \cdot d\vec{l}$$

L

L

initial

Potential and Electric Field intensity due to Electric Dipole:

An electric dipole is formed when two point charges of equal magnitude but opposite sign are separated by a small distance.

Electric field due to electric dipole,
$$\vec{E} = -\vec{\nabla}V$$

En spherical system, $\vec{E} = -\begin{bmatrix} \frac{\partial V}{\partial Y} & \frac{\partial V}{\partial Y} & + \frac{\partial V}{\partial Y} & \frac{\partial V}{\partial Y} & + \frac{\partial V}{\partial Y} & \frac{\partial V}{\partial Y} & + \frac{\partial V}{\partial Y} & \frac{\partial V$

Electric field

due b

electric grant
$$\vec{E} = \frac{Q \cdot L \cos \theta}{2\pi E Y^3} \vec{a_Y} + \frac{Q \cdot L \sin \theta}{4\pi E Y^3} \vec{\theta}$$

where \vec{A} is the second \vec{A} is the second