
CMR

INSTITUTE OF

TECHNOLOGY

USN

Internal Assessment Test 1 – July. 2022

Sub: Mobile Applications Sub Code: 20MCA263

Date: 29/7/2022 Duration: 90 min’s
Max

Marks:
50 Sem: II Branch: MCA

Note : Answer FIVE FULL Questions, choosing ONE full question from each Module

 PART I MARKS

OBE

CO

RBT

1 What do you understand by mobile information design Explain it.

OR

[10]
CO1 L1

2 Explain the terms to understand mobile application users.

[10]
CO1 L1

3
PART II

What are the components of android applications? Explain with example.

OR

[10]

CO2 L1,L2

4 What are the preliminary costs involved in mobile application development [10]
CO1 L1

5

PART III

Describe the anatomy of android application.

OR

[10]

CO2 L2

 6

Compare and contrast mobile application platforms.

[10]

CO2 L2

7

PART IV

What is android? Explain the android architecture with diagram.

[10]
CO2 L2

8

OR

Explain the various information design tools of mobile interface design.

[10]
CO1 L2

9

PART V

Explain the effective use of screen real estate.

OR

[10]
CO1 L2

10 Write a mobile application code to accept and display course information like

student name and course name.

[10]
CO2 L4

1. What do you understand by mobile information design Explain it.

 The visual display of information is how people connect with loved ones,
colleagues, and friends.

 Information design includes
– Information Display
– Design Patterns
– Content Structure and Usage

Information Display:
 People identify signals, interpret the meaning of these signals, determine the goal

according to these interpretations, and then carry out an action until the goal is
reached.

 For example, a microwave has a simple display. When the timer alerts us the
popcorn is done.

 Overly detailed designs do not suit mobile users, who are often micro-tasking,
influenced by urgent and new surroundings, and looking for a quick fix for boredom.
Ex: A microwave has a simple display.

 People identify signals
 interpret the meaning of these signals
 determine the goal accordingly

Design Patterns

A design pattern recycles and repurposes components, reusing the best ideas. More than time

efficiency, patterns have been refined by use. Look to patterns, and maintain a pattern library that

works for you, but look to the user and the purpose of an individual design above any best practices

Navigation

Good design makes it clear how users can move through and use application features.

1. Annunciator Panel

An annunciator panel, seen at the top of Figure, gives information on the state of a mobile

device. Though each mobile device will provide a slightly different panel, developers can modify

or suppress the annunciator panel — which lists the hardware features such as network

connection and battery power — within an application. Because the information in this area is

only notifications, application users will not usually have any direct interaction with the

annunciator panel.

2. Fixed Menu

A menu that remains fixed to the viewport as users roam content is useful in many situations:

➤ When users need immediate access to frequently selected functionality on multiple screens

➤ When a revealable menu is already used on the same screen

➤ When a lack of controls, conflict with key interactions, or low discovery makes a revealable

menu a poor choice

Because fixed menus are always accessible, users can interact with page content as needed;

keep in mind the small screen real estate, and limit any fixed menus to the absolute necessities.

Do not stack multiple fixed menus on top of each other, and reconsider the size and scope of an

application if you have a fixed menu at both the top and bottom of a screen. The style, such as

whether the menu goes across the top or bottom of the viewport, will be largely determined by

the mobile device.

3. Expandable Menu

When all function options for one page cannot fit on the viewport, an expanding menu can

provide selectively available options: a full menu similar to the one shown in Figure will reveal

once prompted. A gesture, like a swipe or double tap, may prompt the reveal as well as selecting

an on-screen icon. Soft keys — hardware buttons connected to on-screen labels — may also

prompt a menu to reveal.

Users often benefit from multiple access options, especially for the harder-to-find gestural

prompts. Users may exit a menu using a back button, a close button that is part of the revealed

menu list, or by toggling with the same gesture or soft key that prompted the reveal. Try to keep

close functionality on the screen while the menu is revealed.

4. Scroll

 It is best to limit scrolling, limiting application screens to the size of the

viewport whenever possible. Some types of apps you develop will require

scrolling to present data to the user effectively, such as an email client. When

scrolling must occur, check that the design communicates the area that can be

scrolled, the current context of a user, and the ratio of the current view to the

total content available

 Only in-focus items should be able to scroll. Make an application more

immersive, incorporating gestures such as tilting to scroll through content. Make

sure that scrolling takes place only on a single axis, if possible. When scrolling

must occur both horizontally and vertically, consider providing a thumbnail of the

user’s place within the entire scrolling area.

 The vertical list simply displays textual information, and is the foundation of

information display on many mobile devices.

 Graphical data — profile photos, category icons, status indicators — can clarify

content lists. Use position as well as size, contrast, and other identifiers to show

the visual importance of elements that users utilize to sort information.

 Thumbnails can be replaced by a default icon when a specific image is not

available, but the value of the graphical indicator diminishes as more icons are

not individually identifiable. Use icons and images to emphasize clarity and

categorical distinction — embracing a strong and varied silhouette — over

personality or generic graphics.

 An expandable list, reveals additional, valuable content for selected (touched)

list items without leaving the current view.

 New information can be revealed as an animation whenever possible, aligning

users with the structure and context of the expanded content areas. Higher-

priority information, whether the revealed content or the list item title, should be

set apart with size, color, or contrast.

 Users may scroll by gesture, device tilt, or on-screen buttons. Choose a different

pattern if live-scrolling — a pixel-by-pixel response to user input — is not

possible.

5. Notifications and Feedback

If the user needs new information, application creators must use notifications. These prompts

pause ongoing tasks, and enable users to change processes and behaviors according to the new

information or feedback. Notification can inform a user (presenting a single button to close the

notification), offer the ability to cancel a process or correct an error, or give multiple options

from which to select. A user should never be presented with more than three options from any

notification

Content and Controls

Input mechanisms, the controls users manipulate to enter or modify data, can be enhanced during the

design process by keeping a few key concepts of mobile usability. Use standard controls, which

positively shape user perceptions of an application.

Mobile platforms differ on the minimal size of any touch point; controls to navigate, select, and read

content should be large enough for a finger to press without error. If users are most likely to hold a

mobile device from the bottom with one hand, then frequently selected points in the interface are more

usable when placed toward the bottom of the screen. Put these primary controls in reach of users’

thumbs, and create wide-enough controls that left-handed users can use buttons and tabs as easily as

right-handed users. Information at the top of the screen will be out of the immediate comfortable reach

of the average thumb: display less commonly selected functionality at the top of the screen.

Be sure to minimize the need to enter data to access application features, especially text entry, which is

often time-consuming and frustrating. Where data entry is actually necessary, consider the cross-

platform differences in touch controls, and scale content for the various screen sizes and resolutions.

Reveal Content

You can display content either as a full page or revealed in context. When you use a full-page layout, the

user should not need to constantly bounce back and forth between pages: all necessary information to

use the features on that page should be displayed on that very page. If content might help users decide

how to proceed, a quickly revealed, in-context design (such as a pop-up box) may be the better design

choice

Display a range of information, from graphics to text, in an array such as an ordered list. Information can

be contextually presented as an addition to other information, and be prioritized or sortable

A hierarchy of shows the parent-child relationship of information within the context of a larger

information set. Large amounts of data can be structured in a way that is relevant and readable. Precise

labels and distinct structure helps users to explore, opening and closing content to find their way around

the presented information.

Expandable panes reveal a small amount of content without leaving the context of the current

application screen. Though the expanding functionality will not work on some lower-end or older

devices, the additional information or interactive elements can enhance user experience. However

application information is displayed, lengthen the value of the application by replenishing content,

adding levels or features, and building a community around the application.

Intervening Screens

Between delivering personalized functionality and life-changing brilliance to users, there will be times

that content must load, or a device becomes locked while the user looks up from their device. During

those times, be sure to include application branding with the title of the application, and do not display

information from any previous screen.

The Home and Splash Screen

The home and splash screens show a default set of available information when the application starts, or

after a task has been completed. Make it clear when users are on the homepage with a distinctly

different screen. The first screen of an application is a great opportunity for branding, as well as a

potential point of frustration for impatient users. Minimize the use of long, over-animated splash

screens and slow-to-access main features.

One way to reduce wait time and increase user value is to store the last-opened screen, and display that

screen the next time the application is opened. A useful design method to disguise slow launch times is

to use the splash screen image as the application background: users will perceive a quicker entry to

application features.

Parallax scrolling, where foreground and background content move at different speeds, will make the

screen appear to have more depth. This technique helps users understand their current location within

an application, and invite more immersive engagement.

Because frequent navigation to the home screen encourages users to jump between pages and between

applications, avoid depending on the home screen for the continuous use of primary features. It is also

preferable to send users to another actionable screen with some notification of the completed task

instead of an idle screen: idle screens often send the message a task is complete, encouraging users to

jump to another application.

The Loading Screen

An in-progress, “loading” screen signals when new data is loading, whether the user logs in to an

account, enters search criteria, or is receiving an automated alert. Develop applications to load as

quickly as possible to avoid showing the loading screen, but design to accommodate application

limitations.

Include the estimated position in progress, and avoid showing information from the previous screen

while newly requested data is loading. To shape user perceptions of load times and give the appearance

of quicker data retrieval, place the progress indicator over a screen shot of the last screen. When there

is sufficient delay, you can display advertising on the loading screen.

Advertising

Project stakeholders need to pay the bills, and advertising can certainly help. But application creators

must find a balance of attention and integration to avoid two common mistakes: too-obvious

advertising, and advertising that is confused for application content. Set apart advertisements with a

strong border, a different color or distinct texture for the background, a full-width box, or — when the

advertisement is smaller than the screen width — a different alignment than application content.

Advertising styles and guidelines will vary across platforms, but advertisements must generally:

 Be clearly differentiated from application content.

 Remain unobtrusive to application features.

 Be actionable, and allow user interaction.

 Be legible.

 Use consistent styles and layout throughout application screens.

Advertisements may scroll within application content, or be locked to the viewport. Avoid animated

advertisements, which distract from primary tasks and information. Whether content is paid advertising,

curated by application administrators, or a help screen, the best content is useful content.

 Content Structure and Usage

Mobile application users are there to consume, produce, and share content: it does not matter how

pretty or useful the application may seem to stakeholders if content is worthless to users.

Users need to quickly locate and effectively use information. Page layouts must therefore reflect the

mental models that users understand. Label key elements to make it clear where users are, in context of

where they can go, as well as how to complete the current process. These content titles should always

be horizontal, and set apart with a different background or surrounding box. Be sure to maintain

consistent capitalization, using either sentence or title case throughout all headers. Titles can include

icons, but these should be descriptive of the content, and not needlessly redundant or vague.

Structured, templated designs are valuable to great user experience: when people can predict which

information will appear on what screen, users can more easily manipulate and navigate through mobile

screens.

Information Architecture

Give every application a strong foundation by organizing, labeling, and identifying all content that users

will perceive. The most common structure is the parent-child relationship of a hierarchy. A growing

segment of interactive content is faceted, tagging chunks of content with attributes that can be filtered

during regular application use.

When categorizing nonfaceted information, limit ambiguity with exclusive categories. It helps to take

note of the most important category and keep all items in that menu the same theme. Be sure to

balance the breadth, the user’s ability to scan the page according to viewport size, and depth of the

architecture. Limit the scope to a depth of two to three levels down.

Wayfinding, or how users will orient themselves in a space and move around it, is generally managed by

paths, nodes, edges, landmarks, and districts.

Consistent, simple navigation elements help users find and use the best information an application has

to offer. Decide what information is necessary, because too many options can be dangerously

frustrating to users. Mobile users consume information and complete simple, linear tasks; jumping

between tasks and comparing information are still more common to desktop user experiences. But do

not discount the future of mobile, and the possibility of complex information seeking and content

production.

Typography

The central focus of every application will often be textual content. The fonts used in any design are far

less important than the way traditional typography methods are used throughout a mobile application.

Size, shape, contrast, color, and position all matter. Type elements, and the relationship between type

elements, should be immediately findable, consumable, and usable. Though sans serif fonts are

generally considered easier to read on a viewport, serif or slab serif fonts have a proper place, such as

bringing emphasis to a header.

Text layout and alignment should follow certain readability guidelines. In a left-to-right language, left

alignment is preferred over justified or center alignment. Because of the thin screen space, bullet lists

are easier to scan than tables, and single-column layouts will generally work best. Mobile interfaces

compound the issues of web interfaces, and add new environmental factors and use cases.

Interactive and dynamic interfaces enable exciting new design capabilities, Such as animated

notifications. But just because it’s neat doesn’t mean it is a good idea. If users only glance down at their

screen when an animation is at a low-visibility point, they miss important information.

Plain Language

“Plain language” is the idea that content producers should speak in the language of their users, in a way

that is clear and understandable to the audience. Content usability is one of the most important factors

for task success, and plain language is usable language. Because of the limited space of a mobile device

screen, these tips are especially relevant to mobile application creators:

➤ Omit unnecessary words. Take the first draft and cut it in half, and then see if you can cut it in half

again (you probably can).

➤ Use the simplest form of a verb.

➤ Use short, simple words; avoid jargon and abbreviations.

➤ Use pronouns.

Mobile devices have tightly restricted widths; when determining readability, font size generally matters more

than the number of characters per line. Precision is key to successful mobile content. Mobile plain language

best practices also include:

➤ Focus keywords to the beginning or top of any screen.

➤ Use the same voice, preferably active voice, throughout the interface. Try to also use the same tense, when

practical.

➤ If a product must be referenced, use a consistent product name.

➤ Correct unnecessarily mean or passive-aggressive error messages and task prompts.

Avoid redundant content. Plain language, and much of mobile design, is not about “dumbing down” the
interface; it’s about elegant precision.

2. Explain the terms to understand mobile application users.

3. What are the components of android applications? Explain with example.

There are four different types of app components:

1. Activities

2. Services

3. Broadcast receivers

4. Content providers

Activities

An activity is the entry point for interacting with the user. It represents a single screen with a

user interface. For example, an email app might have one activity that shows a list of new

emails, another activity to compose an email, and another activity for reading emails. Although

the activities work together to form a cohesive user experience in the email app, each one is

independent of the others. As such, a different app can start any one of these activities if the

email app allows it. For example, a camera app can start the activity in the email app that

composes new mail to allow the user to share a picture. An activity facilitates the following key

interactions between system and app:

Keeping track of what the user currently cares about (what is on screen) to ensure that the system

keeps running the process that is hosting the activity.

Knowing that previously used processes contain things the user may return to (stopped

activities), and thus more highly prioritize keeping those processes around.

Helping the app handle having its process killed so the user can return to activities with their

previous state restored. Providing a way for apps to implement user flows between each other, and

for the system to coordinate these flows. (The most classic example here being share.)

You implement an activity as a subclass of the Activity class. For more information about the

Activity class, see the Activities developer guide.

Services

A service is a general-purpose entry point for keeping an app running in the background for all

kinds of reasons. It is a component that runs in the background to perform long-running

operations or to perform work for remote processes. A service does not provide a user interface.

For example, a service might play music in the background while the user is in a different app,

or it might fetch data over the network without blocking user interaction with an activity. Another

component, such as an activity, can start the service and let it run or bind to it in order to interact

with it. There are actually two very distinct semantics services tell the system about how to

manage an app: Started services tell the system to keep them running until their work is

completed. This could be to sync some data in the background or play music even after the user

leaves the app. Syncing data in the background or playing music also represent two different

types of started services that modify how the system handles them:

Music playback is something the user is directly aware of, so the app tells the system this by

saying it wants to be foreground with a notification to tell the user about it; in this case the

system knows that it should try really hard to keep that service's process running, because the

user will be unhappy if it goes away.

A regular background service is not something the user is directly aware as running, so the

system has more freedom in managing its process. It may allow it to be killed (and then

restarting the service sometime later) if it needs RAM for things that are of more immediate

concern to the user.

Bound services run because some other app (or the system) has said that it wants to make use of

the service. This is basically the service providing an API to another process. The system thus

knows there is a dependency between these processes, so if process A is bound to a service in

process B, it knows that it needs to keep process B (and its service) running for A. Further, if

process A is something the user cares about, then it also knows to treat process B as something

the user also cares about. Because of their flexibility (for better or worse), services have turned

out to be a really useful building block for all kinds of higher-level system concepts. Live

wallpapers, notification listeners, screen savers, input methods, accessibility services, and many

other core system features are all built as services that applications implement and the system

binds to when they should be running.

A service is implemented as a subclass of Service. For more information about the Service class,

see the Services developer guide.

Broadcast receivers

A broadcast receiver is a component that enables the system to deliver events to the app outside

of a regular user flow, allowing the app to respond to system-wide broadcast announcements.

Because broadcast receivers are another well-defined entry into the app, the system can deliver

broadcasts even to apps that aren't currently running. So, for example, an app can schedule an

alarm to post a notification to tell the user about an upcoming event... and by delivering that

alarm to a BroadcastReceiver of the app, there is no need for the app to remain running until the

alarm goes off. Many broadcasts originate from the system—for example, a broadcast

announcing that the screen has turned off, the battery is low, or a picture was captured. Apps can

also initiate broadcasts—for example, to let other apps know that some data has been

downloaded to the device and is available for them to use. Although broadcast receivers don't

display a user interface, they may create a status bar notification to alert the user when a

broadcast event occurs. More commonly, though, a broadcast receiver is just a gateway to other

components and is intended to do a very minimal amount of work. For

instance, it might schedule a JobService to perform some work based on the event with

JobScheduler

A broadcast receiver is implemented as a subclass of BroadcastReceiver and each broadcast is

delivered as an Intent object. For more information, see the BroadcastReceiver class.

Content providers

A content provider manages a shared set of app data that you can store in the file system, in a

SQLite database, on the web, or on any other persistent storage location that your app can

access. Through the content provider, other apps can query or modify the data if the content

provider allows it. For example, the Android system provides a content provider that manages

the user's contact information. As such, any app with the proper permissions can query the

content provider, such as ContactsContract.Data, to read and write information about a

particular person

4 What are the preliminary costs involved in mobile application development

Preliminary cost associated with mobile application development.

There are many costs associated with mobile application development.

• Each developer will need hardware and software to develop the applications on.

• The team will need devices to test the software on.

• And if you want to deploy your application to any public market, then your company will need

accounts on the various markets (these often renew annually).

Hardware

1. To develop good mobile apps, you’ll need an Intel-based Mac. Intel versions of Mac because

you can

run Windows on them either virtually (using something like Parallels, or VMWare Fusion) or on

the bare

metal (using Apple’s BootCamp).

2. You’ll also need multiple monitors. The emulator/simulator running in one monitor, Dev Tool

(IDE)

running on another, and a web browser on another with the documentation for the platform for

which

you are developing. Having access to all of this information at once prevents context switching for

a

developer, and helps maintain focus.

3. The emulator and simulators are great, but not perfect, so you’ll need one of each of the types of

devices you want to develop for.

Software

Following sections present an outline for what you will need for all of the platforms.

Licenses and Developer Accounts

The following table contains information regarding all of the various accounts necessary to

develop for

each platform and costs associated with such.

Documentation and APIs

Following are links to the respective technologies’ online documentation and APIs. This will be

the

location for the latest information in the respective technology.

• MSDN Library: http://msdn.microsoft.com/en-us/library/ff402535(v=vs.92).aspx

• iOS Documentation: http://developer.apple.com/devcenter/ios/index.action

• BlackBerry Documentation: http://docs.blackberry.com/en/developers/?userType=21

• Android SDK Documentation: http://developer.android.com/reference/packages .html and

http://developer.android.com/guide/index.html

• PhoneGap Documentation: http://docs.phonegap.com/

• Titanium API Documentation: http://developer.appcelerator.com/apidoc/mobile/latest

The Bottom Line

• Total cost per developer to create, maintain, and distribute mobile applications for all the

platforms you can expect to pay a few thousand dollars just for the minimum infrastructure. And

this is really the bare minimum for development.

• Given the opportunity to expand this more I would upgrade the laptop to a MacBook Pro, with

plenty of RAM, and upgrade the hard disk drive (HDD) to a solid-state drive (SSD). By making

these upgrades you will incur a higher initial cost, but the speed increase compared to the bare

bones will recoup that cost, if only in peace of mind.

• It is difficult to quantify the savings from these upgrades, but developers without them are at a

distinct disadvantage.

5 Describe the anatomy of android application.

The various folders and their files are as follows:

src — Contains the file, MainActivity.java. It is the source file for your activity. You

will write the code for your application in this file.

Android 4.4.2 — This item contains one file, android.jar, which contains all the

class libraries needed for an Android application.

gen — Contains the R.java file, a compiler-generated file that references all

the resources found in your project. You should not modify this file.

assets — This folder contains all the assets used by your application, such as

HTML, text files, databases, etc.

res — This folder contains all the resources used in your application. It also contains

a few other subfolders:

o drawable - <resolution>: All the image files to be used by the Android

application must be stored here.

layout - contains activity_main.xml file, which the is GUI of the application.

o values - contains files like strings.xml, styles.xml that are need for

storing the string variables used in the applications, creating style-

sheets etc.

AndroidManifest.xml — This is the manifest file for your Android application. Here

you specify the permissions needed by your application, as well as other features

(such as intent-filters, receivers, etc.).

Details of some of the important files are given hereunder:

strings.xml File: The activity_main.xml file defines the user interface for your

activity. Observe the following in bold:

<TextView

android:layout_width=”fill_parent”

android:layout_height=”wrap_content”

android:text=”@string/hello” />

The @string in this case refers to the strings.xml file located in the res/values folder.

Hence, @string/hello refers to the hello string defined in the strings.xml file, which

is “Hello World!”:

<?xml version=”1.0” encoding=”utf-8”?>

<resources>

<string name=”hello”>Hello World!</string>

<string name=”app_name”>HelloWorld</string>

</resources>

It is recommended that you store all the string constants in your application in this

strings.xml file and reference these strings using the @string identifier. That way,

if you ever need to localize your application to another language, all you need to do

is replace the strings stored in the strings.xml file with the targeted language and

recompile your application.

AndroidManifest.xml File: This file contains detailed information

about the application. Observe the code in this file:

Key points about this file are as below :

o It defines the package name of the application as

net.learn2develop.HelloWorld.

o The version code of the application is 1. This value is used to

identify the version number of your application. It can be used to

programmatically determine whether an application needs to be

upgraded.

o The version name of the application is 1.0. This string value is mainly

used for display to the user.

o The application uses the image named ic_launcher.png located in the

drawable folder.

o The name of this application is the string named app_name defined in the

strings.xml file.

o There is one activity in the application represented by the MainActivity.java

file. The label displayed for this activity is the same as the application name.

o Within the definition for this activity, there is an element named <intent-filter>:

The action for the intent filter is named android.intent.action.MAIN to

indicate that this activity serves as the entry point for the application.

The category for the intent-filter is named

android.intent.category.LAUNCHER to indicate that the

application can be launched from the device’s Launcher icon.

o Finally, the android:minSdkVersion attribute of the <uses-sdk>

element specifies the minimum version of the OS on which the

application will run.

R.java File: As you add more files and folders to your project, Eclipse will

automatically generate the content of R.javaYou are not supposed to modify

the content of the R.java file; Eclipse automatically generates the content for you

when you modify your project.

MainActivity.java File: The code that connects the activity to the UI

(activity_main.xml) is the setContentView() method, which is in the MainActivity.java

file:

package net.learn2develop.HelloWorld;

import android.app.Activity;

import android.os.Bundle;

public class MainActivity extends Activity

{

/** Called when the activity is first created. */

@Override

public void onCreate(Bundle savedInstanceState)

{

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

}

}

Here, R.layout.main refers to the activity_main.xml file located in the

res/layout folder. As you add additional XML files to the res/layout folder,

the filenames will automatically be generated in the R.java file. The

onCreate() method is one of many methods that are fired when an activity is

loaded.

6. Compare and contrast mobile application platforms.

7. What is android? Explain the android architecture with diagram.

The Android OS is roughly divided into five sections in four main layers:

i)Linux kernel — This is the kernel on which Android is based. This layer contains all the

lowlevel device drivers for the various hardware components of an Android device.

ii) Libraries — These contain all the code that provides the main features of an Android OS.

For example, the SQLite library provides database support so that an application can use it

for data storage. The WebKit library provides functionalities for web browsing.

iii) Android runtime — At the same layer as the libraries, the Android runtime provides a

set of core libraries that enable developers to write Android apps using the Java

programming language. The Android runtime also includes the Dalvik virtual machine,

which enables every Android application to run in its own process, with its own instance

of the Dalvik virtual machine (Android applications are compiled into the Dalvik

executables). Dalvik is a specialized virtual machine designed specifically for Android

and optimized for battery- powered mobile devices with limited memory and CPU.

iv) Application framework — Exposes the various capabilities of the Android OS to

application developers so that they can make use of them in their applications.

v) Applications — At this top layer, you will find applications that ship with the Android

device (such as Phone, Contacts, Browser, etc.), as well as applications that you download

and install from the Android Market. Any applications that you write are located at this

layer.
8.Explain the various information design tools of mobile interface design.

Sketching and Wireframes

Sometimes we need to go analog, shaping ideas on paper before focusing on the pixels.

Storyboard application screens to outline features and flow, focusing on the big picture. Save

wasted time developing the wrong thing the right way by involving all key stakeholders in

the sketching and wireframing process. Mobile stencils are even on the market to help non

doodlers pencil in ideas before turning to computer screens.

A wireframe is a rough outline of each application’s framework. Stay focused on

functionality during wireframing; these easy-to-share, easy-to-edit files are just a skeleton of

the design.

Mock-up Designs

When you are ready to consider colors and fonts, you can build the mock-up design concept

in Adobe Creative Suite. The final images of buttons and icons will be pulled from the final

mock-up design, but details will solidify only after some experimentation.

Prototype

“Perfection is the enemy of good,” and designs that start as ugly prototypes quickly progress

to elegant, usable applications. The most primitive start is a most important iteration.

Platform-specific tools are available, such as the Interface Builder or Xcode for iOS, but

HTML and CSS are a standard and simple way to quickly build prototypical interactions.

On-device Testing

One of the most important tools during design will be the physical device. Buy, or borrow,

the devices an application will run on.

Simulators and Emulators

Simulators and emulators are important when the hardware is unavailable and the service

contracts for devices are prohibitively expensive. A simulator uses a different codebase to act

like the intended hardware environment. An emulator uses a virtual machine to simulate the

environment using the same codebase as the mobile application.

9. Explain the effective use of screen real estate.
The first step to use the smaller interfaces of mobile devices effectively is to know the context of use. Who

are the users, what do they need and why, and how, when, and where will they access and use

information?

Mobile design is difficult, as developers try to elegantly display a telescoped view of almost limitless

information. But user experience issues are amplified on mobile interfaces.

Cognitive load increases while attention is diverted by the needs to navigate, remember what was seen,

and re-find original context.

Cognitive load is the mental effort to comprehend and use an application, whatever the inherent task

complexity or information structure may be.

Effectively use screen real estate by embracing minimalism, maintaining a clear visual hierarchy, and

staying focused.

Embrace Minimalism

• Limit the features available on each screen, and use small, targeted design features.

• Content on the screen can have a secondary use within an application, but the

application designer should be able to explain why that feature is taking up screen space.

• Banners, graphics, and bars should all have a purpose.

Use a Visual Hierarchy

• Help users fight cognitive distractions with a clear information hierarchy.

• Draw attention to the most important content with visual emphasis.

• Users will be drawn to larger items, more intense colors, or elements that are called out

with bullets or arrows; people tend to scan more quickly through lighter color contrast, less

intense shades, smaller items, and text-heavy paragraphs.

• A consistent hierarchy means consistent usability; mobile application creators can create

a hierarchy with position, form, size, shape, color, and contrast.

Stay Focused

• Start with a focused strategy, and keep making decisions to stay focused

throughout development.

• A smaller file size is a good indicator of how fast an application will load, so the

benefits of fighting feature creep extend beyond in-application user experience.

• Focused content means users won’t leave because it takes too long for the

overwhelming amount of images per screen to load.

• And users won’t be frustrated with the number of links that must be cycled through to

complete a task. Text-heavy pages reduce engagement as eyes glaze over and users switch

to another application.

10. Write a mobile application code to accept and display course information like student

name and course name.
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingBottom="@dimen/activity_vertical_margin"

 android:paddingLeft="@dimen/activity_horizontal_margin"

 android:paddingRight="@dimen/activity_horizontal_margin"

 android:paddingTop="@dimen/activity_vertical_margin"

 tools:context="com.example.p1.MainActivity" >

 <TextView

 android:id="@+id/textView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentLeft="true"

 android:layout_alignParentTop="true"

 android:layout_marginTop="26dp"

 android:text="StudentName" />

 <EditText

 android:id="@+id/editText1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignBottom="@+id/textView1"

 android:layout_marginLeft="65dp"

 android:layout_toRightOf="@+id/textView1"

 android:ems="10" >

 <requestFocus />

 </EditText>

 <TextView

 android:id="@+id/textView2"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignLeft="@+id/textView1"

 android:layout_below="@+id/textView1"

 android:layout_marginTop="30dp"

 android:text="CourseName" />

 <EditText

 android:id="@+id/editText2"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignBaseline="@+id/textView2"

 android:layout_alignBottom="@+id/textView2"

 android:layout_alignLeft="@+id/editText1"

 android:layout_marginLeft="20dp"

 android:ems="10" />

 <Button

 android:id="@+id/button1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_below="@+id/editText2"

 android:layout_centerHorizontal="true"

 android:layout_marginTop="62dp"

 android:text="Submit" />

</RelativeLayout>

Java File

public class MainActivity extends ActionBarActivity {

EditText studentNameEdt;

EditText courseNameEdt;

Button loginBtn;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 // initializing our edit text and buttons.

 studentNameEdt = (EditText) findViewById(R.id.editText1);

 courseNameEdt = (EditText) findViewById(R.id.editText2);

 loginBtn = (Button)findViewById(R.id.button1);

 // adding on click listener for our button.

 loginBtn.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 // on below line we are getting data from our edit text.

 String studentName = studentNameEdt.getText().toString();

 String courseName = courseNameEdt.getText().toString();

 // checking if the entered text is empty or not.

 if (TextUtils.isEmpty(userName) &&

TextUtils.isEmpty(password)) {

 Toast.makeText(MainActivity.this, "Please enter data",

Toast.LENGTH_SHORT).show();

 }

 else

 {

 Toast.makeText(MainActivity.this, "Studentname

is"+studentName+"\t"+"courseName is"+courseName, Toast.LENGTH_SHORT).show();

 }

 // calling a method to login our user.

 }

 });

 }

}

	 The visual display of information is how people connect with loved ones, colleagues, and friends.
	 Information design includes
	– Information Display
	– Design Patterns
	– Content Structure and Usage
	Information Display:
	 People identify signals, interpret the meaning of these signals, determine the goal according to these interpretations, and then carry out an action until the goal is reached.
	 For example, a microwave has a simple display. When the timer alerts us the popcorn is done.
	 Overly detailed designs do not suit mobile users, who are often micro-tasking, influenced by urgent and new surroundings, and looking for a quick fix for boredom.
	Ex: A microwave has a simple display.
	 People identify signals
	 interpret the meaning of these signals
	 determine the goal accordingly
	Design Patterns
	Navigation
	Reveal Content
	Intervening Screens
	The Home and Splash Screen
	The Loading Screen
	Advertising
	Information Architecture
	Typography
	Plain Language
	Activities
	Services
	Broadcast receivers
	Content providers
	setContentView(R.layout.main);

	Embrace Minimalism
	Use a Visual Hierarchy
	Stay Focused

