
Page 1 of 9 

CMR 

INSTITUTE OF                        

TECHNOLOGY 

                                  

 

USN           

Internal Assessment Test II – August 2022 

Sub: Object Oriented Programming with Java 
Sub 

Code: 
20MCA22 

Date: 29.08.22 Duration: 90 min’s Max Marks: 50 Sem: II Branch: MCA 

 

Note : Answer FIVE FULL Questions, choosing ONE full question from each Module 
 

  

            PART I MARKS 

OBE 

 

CO 

 

RBT 

1  Can you overload a constructor? If yes, write a program to illustrate. If no, give reasons. 

OR 

[10] 
CO1 L1 

2   Write a program in Java for a recursive factorial calculator 

 

[10] 
CO1 L3 

 

3           

PART II 

Create an interface Bank having a method rateOfInterest() with float return type. Create 

to classes SBI and PNB which implements interface Bank and return rate of interest of 

9.15 and 9.7 respectively. Implement this scenario and print the rate of interest of SBI. 

OR 

[10] 

CO1 L2 

4 

       

Write a program in Java to implement multiple inheritance [10] 
CO1 L2 

 

 

5   

PART III 

What is a Package? Illustrate with examples how a package can be accessed from 

outside the package? 

OR 

 

 

 

[10] CO2 L2 

6 Discuss Java library package hierarchy and their contents. What are the package 

member access scopes? 

 

[5+5] 

CO1 L2 

 

7 
PART IV 

What is an exception? Explain exception handling mechanism with proper 

example.  

OR 

 

[10] 

CO1 L2 

 

8 

Differentiate between throw and throws. Explain with examples. 

 

 

[10] 

CO1 L2 

 

9 
PART V 

Write a Java program to check if a number is Armstrong's number or not? 

(371 is Armstrong’s number as 3*3*3 + 7*7*7 + 1*1*1 = 371) 

OR 

 

 

[10] CO2 L1 

10 Write a Java program to check if a given string is Pangram. (A string is a pangram 

string if it contains all the character of the alphabets) 

[10] CO2 L4 

 

 

 

 

 

 

 

 



Page 2 of 9 

 

1. In Java, we can overload constructors like methods. The constructor overloading can be defined as the 

concept of having more than one constructor with different parameters so that every constructor can perform 

a different task. 

 

Example: 

public class Student {   

//instance variables of the class   

int id;   

String name;   

   

Student(){   

System.out.println("this a default constructor");   

}   

   

Student(int i, String n){   

id = i;   

name = n;   

}   

   

public static void main(String[] args) {   

//object creation   

Student s = new Student();   

System.out.println("\nDefault Constructor values: \n");   

System.out.println("Student Id : "+s.id + "\nStudent Name : "+s.name);   

   

System.out.println("\nParameterized Constructor values: \n");   

Student student = new Student(10, "David");   

System.out.println("Student Id : "+student.id + "\nStudent Name : "+student.name);   

}   

}   

 

Output: 

this a default constructor 

 

Default Constructor values:  

Student Id : 0 

Student Name : null 

 

Parameterized Constructor values:  

Student Id : 10 

Student Name : David 

 

2.  

class FactorialExample2{   

 static int factorial(int n){     

  if (n == 0)     

    return 1;     

  else     

    return(n * factorial(n-1));     

 }     

 public static void main(String args[]){   

  int i,fact=1;   

  int number=4;//It is the number to calculate factorial     

  fact = factorial(number);    



Page 3 of 9 

  System.out.println("Factorial of "+number+" is: "+fact);     

 }   

}   

 

3. 

interface Bank{   

float rateOfInterest();   

}   

class SBI implements Bank{   

public float rateOfInterest(){return 9.15f;}   

}   

class PNB implements Bank{   

public float rateOfInterest(){return 9.7f;}   

}   

class TestInterface2{   

public static void main(String[] args){   

Bank b=new SBI();   

System.out.println("ROI: "+b.rateOfInterest());   

} 

}    

 

4.  

interface Printable{   

void print();   

}   

interface Showable{   

void print();   

}   

class TestInterface implements Printable, Showable{   

public void print(){System.out.println("Hello");}   

public static void main(String args[]){   

TestInterface obj = new TestInterface();   

obj.print();   

  }   

}   

 

5. Package in Java is a mechanism to encapsulate a group of classes, sub packages and interfaces. Packages 

are used for: 

 
- Preventing naming conflicts. For example there can be two classes with name Employee in two packages, 

college.staff.cse.Employee and college.staff.ee.Employee 

- Making searching/locating and usage of classes, interfaces, enumerations and annotations easier 

- Providing controlled access: protected and default have package level access control. A protected member is 

accessible by classes in the same package and its subclasses. A default member (without any access 

specifier) is accessible by classes in the same package only. 

- Packages can be considered as data encapsulation (or data-hiding).  

There are three ways to access the package from outside the package. 

1. import package.*; 

2. import package.classname; 

3. fully qualified name (static import). 

 

1.  

//save by A.java   



Page 4 of 9 

package pack;   

public class A{   

  public void msg(){System.out.println("Hello");}   

 

//save by B.java   

package mypack;   

import pack.*;   

class B{   

  public static void main(String args[]){   

   A obj = new A();   

   obj.msg();   

  }   

}   

 

2.  

//save by A.java   

package pack;   

public class A{   

  public void msg(){System.out.println("Hello");}   

}   

 

//save by B.java   

package mypack;   

import pack.A;   

class B{   

  public static void main(String args[]){   

   A obj = new A();   

   obj.msg();   

  }   

}   

 

3.  

//save by A.java   

package pack;   

public class A{   

  public void msg(){System.out.println("Hello");}   

}   

 

//save by B.java   

package mypack;   

class B{   

  public static void main(String args[]){   

   pack.A obj = new pack.A();//using fully qualified name   

   obj.msg();   

  }   

}  

 

 

6. Java Built-in Packages: 

These packages consist of a large number of classes which are a part of Java API. Some of the commonly 

used built-in packages are: 

1) java.lang: Contains language support classes(e.g classed which defines primitive data types, math 

operations). This package is automatically imported. 

2)  java.io: Contains classed for supporting input / output operations. 



Page 5 of 9 

3)  java.util: Contains utility classes which implement data structures like Linked List, Dictionary and 

support ; for Date / Time operations. 

4)  java.applet: Contains classes for creating Applets. 

5)  java.awt: Contain classes for implementing the components for graphical user interfaces (like button , 

;menus etc). 

6)  java.net: Contain classes for supporting networking operations. 

 

 
 

Package member access scopes: 
 

Private 

Member 

Default 

Member 

Protected 

Member 

Public 

Member 

Visible in same class Yes Yes Yes Yes 

Visible in same package in 

subclass 

No Yes Yes Yes 

Visible in same package by 

non-subclass 

No Yes Yes Yes 

Visible in different package by 

subclass 

No No Yes Yes 

Visible in different package by 

non-subclass 

No No No Yes 

 

7. The Exception Handling in Java is one of the powerful mechanism to handle the runtime errors so that the 

normal flow of the application can be maintained. 

An exception is an event that disrupts the normal flow of the program. It is an object which is thrown at 

runtime. 

Exception Handling is a mechanism to handle runtime errors such as ClassNotFoundException, 

IOException, SQLException, RemoteException, etc. 

 

The core advantage of exception handling is to maintain the normal flow of the application. An exception 

normally disrupts the normal flow of the application; that is why we need to handle exceptions. Let's 

consider a scenario: 

Suppose there are 10 statements in a Java program and an exception occurs at statement 5; the rest of the 

code will not be executed, i.e., statements 6 to 10 will not be executed. However, when we perform 

exception handling, the rest of the statements will be executed. That is why we use exception handling in 

Java. 



Page 6 of 9 

 

 

public class JavaExceptionExample{   

  public static void main(String args[]){   

   try{   

      //code that may raise exception   

      int data=100/0;   

   }catch(ArithmeticException e){System.out.println(e);}   

   //rest code of the program    

   System.out.println("rest of the code...");   

  }   

}   

 

8.  

Sr. no. Basis of 

Differences 

throw throws 

1. Definition Java throw keyword is used throw an 

exception explicitly in the code, 

inside the function or the block of 

code. 

Java throws keyword is used in the 

method signature to declare an 

exception which might be thrown by 

the function while the execution of the 

code. 

2. Type of exception Using throw keyword, we can only 

propagate unchecked exception i.e., 

the checked exception cannot be 

propagated using throw only. 

Using throws keyword, we can declare 

both checked and unchecked 

exceptions. However, the throws 

keyword can be used to propagate 

checked exceptions only. 

3. Syntax The throw keyword is followed by an 

instance of Exception to be thrown. 

The throws keyword is followed by 

class names of Exceptions to be 

thrown. 

4. Declaration throw is used within the method. throws is used with the method 

signature. 

5. Internal 

implementation 

We are allowed to throw only one 

exception at a time i.e. we cannot 

throw multiple exceptions. 

We can declare multiple exceptions 

using throws keyword that can be 

thrown by the method. For example, 

main() throws IOException, 

SQLException. 

 

Example: 

  public class TestThrowAndThrows   

  {   

      // defining a user-defined method   

      // which throws ArithmeticException   

      static void method() throws ArithmeticException   

      {   

          System.out.println("Inside the method()");   

          throw new ArithmeticException("throwing ArithmeticException");   

      }  

  public static void main(String args[])   

      {   

          try   

          {   



Page 7 of 9 

              method();   

          }   

          catch(ArithmeticException e)   

          {   

              System.out.println("caught in main() method");   

          }   

      }   

  } 

9.  

import java.util.Scanner;   

import java.lang.Math;   

public class ArmstsrongNumberExample2   

{   

//function to check if the number is Armstrong or not   

static boolean isArmstrong(int n)    

{    

int temp, digits=0, last=0, sum=0;    

//assigning n into a temp variable   

temp=n;    

//loop execute until the condition becomes false   

while(temp>0)     

{    

temp = temp/10;    

digits++;    

}    

temp = n;    

while(temp>0)    

{    

//determines the last digit from the number       

last = temp % 10;    

//calculates the power of a number up to digit times and add the resultant to the sum variable   

sum +=  (Math.pow(last, digits));    

//removes the last digit    

temp = temp/10;    

}   

//compares the sum with n   

if(n==sum)    

//returns if sum and n are equal   

return true;       

//returns false if sum and n are not equal   

else return false;    

}    

//driver code   

public static void  main(String args[])      

{      

int num;    

Scanner sc= new Scanner(System.in);   

System.out.print("Enter the number: ");   

//reads the limit from the user   

num=sc.nextInt();   

if(isArmstrong(num))   

{   

System.out.print("Armstrong ");   

}   



Page 8 of 9 

else    

{   

System.out.print("Not Armstrong ");   

}   

}    

}   

 

10.  

import java.util.Scanner;   

public class PangramStringExample4   

{   

public static void main(String args[])   

{   

Scanner sc = new Scanner(System.in);   

System.out.print("Enter the string: ");   

//reads a string from the user   

String str = sc.nextLine();   

//determines the length of the string   

int n=str.length();   

int freq[] = new int[26];   

//loop iterate over all the characters    

for(int i=0;i<26;i++)   

{   

//initially, each character marked with index 0        

freq[i]=0;   

}  //end of for loop   

//loop iterate over the given string   

for(int i=0;i<n;i++)   

{   

if(str.charAt(i)!=' ')   

{   

//subtract 'a' from the character at the specified index and increment the freqency index by 1   

//means that chracter is marked   

freq[str.charAt(i)-'a']++;   

}  //end of if   

}  //end of for loop   

int temp=0;   

for(int i=0;i<26;i++)   

{   

//if frequency index is 0, means character is unmarked       

if(freq[i]==0)   

{   

//set temp to 1 and break the loop       

temp=1;   

break;   

}   

}  //end of for loop   

//if condition is true, the string is pangram string, else not pangram   

if(temp==1)   

{   

System.out.println("The string is not a pangram string.");   

}   

else   

{   

System.out.println("The string is a pangram string.");   



Page 9 of 9 

}   

}   

}   


