
Page 1 of 18

CMR

INSTITUTE OF

TECHNOLOGY

USN

Internal Assessment Test 2 – August. 2022

Sub: Mobile Applications
Sub

Code:
20MCA263

Date: 1/9//2022 Duration: 90 min’s Max Marks: 50 Sem: II Branch: MCA

Note : Answer FIVE FULL Questions, choosing ONE full question from each Module

PART I MARKS

OBE

CO

RBT

1 Illustrate the different methods for getting location data? Explain

OR

[10]
CO4 L1

2 How do you publish android applications? List out steps briefly [10] CO5 L2

3
PART II

Explain the concept of sending SMS and write the procedure for sending an

SMS through Android application with a code segment.

OR

[10]

CO4 L2

4a)

Write a program on Date and Time picker views.

[5]

CO4 L3

b) Develop a standard calculator application to perform basic calculations like

addition, subtraction, multiplication and division

[5]

CO2 L3

CMR

INSTITUTE OF

TECHNOLOGY

USN

Internal Assessment Test 2 – August. 2022

Sub: Mobile Applications Sub Code: 20MCA263

Date: 1/9/2022 Duration: 90 min’s
Max

Marks:
50 Sem: II Branch: MCA

Note : Answer FIVE FULL Questions, choosing ONE full question from each Module

PART I MARKS

OBE

CO RBT

1 Illustrate the different methods for getting location data? Explain

OR

[10]
CO4 L1

2 How do you publish android applications? List out steps briefly [10] CO5 L2

3
PART II

Explain the concept of sending SMS and write the procedure for sending an SMS

through Android application with a code segment.

OR

[10]

CO4 L2

4a)

Write a program on Date and Time picker views.

[5]

CO4 L3

b) Develop a standard calculator application to perform basic calculations like

addition, subtraction, multiplication and division.

[5]
CO2 L3

Page 2 of 18

5
PART III

Differentiate the basics of android UI design and location based services.

OR

[10]
CO4 L3

6 Write a program in android for sending Email.

[10] CO4 L2

7
PART IV

What are notifications? Explain various types of notifications.

[10]

CO4 L2

8
OR

Write a program to demonstrate autocompleteview with a list of places

[10]

CO5 L4

9
PARTV

Write in details how to display Google maps in your own android applications.

 OR

[10] CO2 L2

10 Write a program to demonstrate the progress bar along with the status of

completion

[10] CO5 L4

5
PART III

Differentiate the basics of android UI design and location based services.

OR

[10] CO4 L3

6 Write a program in android for sending Email.

[10]
CO4 L4

7
PART IV

What are notifications? Explain various types of notifications.

[10]

CO4 L2

8

OR

 Write a program to demonstrate autocompleteview with a list of places

[10]

CO5 L4

9
PARTV

Write in details how to display Google maps in your own android applications

 OR

[10]

CO2 L2

10 Write a program to demonstrate the progress bar along with the status of

completion

[10] CO5 L4

Page 3 of 18

1.Illustrate the different methods for getting location data? Explain

Nowadays, mobile devices are commonly equipped with GPS receivers.

o Because of the many satellites orbiting the earth, you can use a GPS receiver

to find your location easily. However, GPS requires a clear sky to work and

hence does not always work indoors or where satellites can’t penetrate (such

as a tunnel through a mountain).

 Another effective way to locate your position is through cell tower triangulation.

o When a mobile phone is switched on, it is constantly in contact with base

stations surrounding it.

o By knowing the identity of cell towers, it is possible to translate this

information into a physical location through the use of various databases

containing the cell towers’ identities and their exact geographical locations.

o The advantage of cell tower triangulation is that it works indoors, without the

need to obtain information from satellites.

o It is not as precise as GPS because its accuracy depends on overlapping

signal coverage, which varies quite a bit.

o Cell tower triangulation works best in densely populated areas where the cell

towers are closely located.

 A third method of locating your position is to rely on Wi-Fi triangulation.

o Rather than connect to cell towers, the device connects to a Wi-Fi network

and checks the service provider against databases to determine the location

serviced by the provider

On the Android, the SDK provides the LocationManager class to help your device

determine the user’s physical location.

lm.requestLocationUpdates(LocationManager.GPS_PROVIDER, 0, 0,

locationListener);

This method takes four parameters:

1. Provider -The name of the provider with which you register. In this case, you are

using GPS to obtain your geographical location data.

2. minTime - The minimum time interval for notifications, in milliseconds.

3. minDistance - The minimum distance interval for notifications, in meters.

4. Listener - An object whose onLocationChanged() method will be called for each

location update

2. How do you publish android applications? List out steps briefly

Once you have signed your APK fi les, you need a way to get them onto your users’

devices. Three methods are here:

 Deploying manually using the adb.exe tool

 Hosting the application on a web server

 Publishing through the Android Market

Besides the above methods, you can install your applications on users’ devices through emails,

SD card, etc. As long as you can transfer the APK file onto the user’s device, you

Page 2 of 22

can install the application.

Using the adb.exe Tool: Once your Android application is signed, you can deploy it to

emulators and devices using the adb.exe (Android Debug Bridge) tool (located in the

platform-tools folder of the Android SDK). Using the command prompt in Windows,

navigate to the “<Android_SDK>\platform-tools” folder. To install the application to an

emulator/device (assuming the emulator is currently up and running or a device is currently

connected), issue the following command:

adb install “C:\Users\Wei-Meng Lee\Desktop\LBS.apk”

(Note that, here, LBS is name of the project)

Besides using the adb.exe tool to install applications, you can also use it to remove an

installed application. To do so, you can use the shell option to remove an application from

Page 4 of 18

its installed folder:

adb shell rm /data/app/net.learn2develop.LBS.apk

Another way to deploy an application is to use the DDMS tool in Eclipse. With an emulator

(or device) selected, use the File Explorer in DDMS to go to the /data/app folder and use

the “Push a file onto the device” button to copy the APK file onto the device.

Using a Web Server: If you wish to host your application on your own, you can use a web

server to do that. This is ideal if you have your own web hosting services and want to

provide the application free of charge to your users or you can restrict access to certain

groups of people. Following are the steps involved:

 Copy the signed LBS.apk fi le to c:\inetpub\wwwroot\.

<html>

<title>Where Am I application</title>

<body>

Download the Where Am I application here

</body>

</html>

 On your web server, you may need to register a new MIME type for the APK file.

The MIME type for the .apk extension is application/vnd.android.packagearchive.

 From the Application settings menu, check the “Unknown sources” item. You will be

prompted with a warning message. Click OK. Checking this item will allow the

Emulator/device to install applications from other non-Market sources (such as from

a web server).

 To install the LBS.apk application from the IIS web server running on your computer,

launch the Browser application on the Android Emulator/device and navigate to the

URL pointing to the APK file. To refer to the computer running the emulator, you

should use the special IP address of 10.0.2.2.

 Alternatively, you can also use the IP address of the host computer. Clicking the

“here” link will download the APK file onto your device. Drag the notification bar

down to reveal the download status. To install the downloaded application, simply

tap on it and it will show the permission(s) required by this application.

 Click the Install button to proceed with the installation. When the application is

installed, you can launch it by clicking the Open button.

Besides using a web server, you can also e‑mail your application to users as an

attachment; when the users receive the e‑mail they can download the attachment and

install the application directly onto their device.

Publishing on Android Market: It is always better to host your application on Android

market (Google Playstore). Steps involved in doing so, are explained hereunder:

 Creating a Developer Profile:

o Create a developer profile at http://market.android.com/publish/Home using a

Google account.

o Pay one-time registration fees.

o Agree Android Market Developer Distribution Agreement

 Submitting Your Apps: If you intend to charge for your application, click the Setup

Merchant Account link located at the bottom of the screen. Here you enter additional

information such as bank account and tax ID. You will be asked to supply some

details for your application. Following are the compulsory details to be provided:

o The application in APK format

o At least two screenshots. You can use the DDMS perspective in Eclipse to

capture screenshots of your application running on the Emulator or real

device.

A high-resolution application icon. This size of this image must be 512×512

pixels.

o Provide the title of your application, its description and recent update details.

Page 5 of 18

o Indicate whether your application employs copy protection, and specify a

content rating.

When all these setup is done, click Publish to publish your application on the

Android Market.

3. Explain the concept of sending SMS and write the procedure for sending an SMS through Android

application with a code segment.

SMS messaging is one of the main killer applications on a mobile phone today — for some

users as necessary as the phone itself. Any mobile phone you buy today should have at

least SMS messaging capabilities, and nearly all users of any age know how to send and

receive such messages. Android comes with a built-in SMS application that enables you to

send and receive SMS messages. However, in some cases you might want to integrate

SMS capabilities into your own android application. For example, you might want to write

an application that automatically sends a SMS message at regular time intervals. For

example, this would be useful if you wanted to track the location of your kids — simply give

them an Android device that sends out an SMS message containing its geographical

location every 30 minutes.

4.1.1 Sending SMS Messages Programmatically

To create an application that can send SMS, following are the steps to be followed:

Create a new android application.

Add the following statements in to the main.xml file:

<Button

android:id=”@+id/btnSendSMS”

android:layout_width=”fill_parent”

android:layout_height=”wrap_content”

android:text=”Send SMS” />

In the AndroidManifest.xml file, add the following statements:

<uses-sdkandroid:minSdkVersion=”8” />

<uses-permission

android:name=”android.permission.SEND_SMS”>

</uses-permission>

Add the following statements to the MainActivity.java file:

import android.app.PendingIntent;

import android.content.Intent;

import android.telephony.SmsManager;

import android.view.View;

import android.widget.Button;

public class MainActivity extends Activity

{

Button btnSendSMS;

/** Called when the activity is first created.

@Override

public void onCreate(Bundle savedInstanceState)

{

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

btnSendSMS = (Button) findViewById(R.id.btnSendSMS);

btnSendSMS.setOnClickListener(new View.OnClickListener()

{

public void onClick(View v)

4.a. Write a program on Date and Time picker views.

4.b. Develop a standard calculator application to perform basic calculations like addition, subtraction,

multiplication and division.

<?xml version="1.0" encoding="utf-8"?>

Page 6 of 18

<LinearLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 android:orientation="vertical"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent">

 <LinearLayout

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:id="@+id/linearLayout1"

 android:layout_marginLeft="10pt"

 android:layout_marginRight="10pt"

 android:layout_marginTop="3pt">

 <EditText

 android:layout_weight="1"

 android:layout_height="wrap_content"

 android:layout_marginRight="5pt"

 android:id="@+id/etNum1"

 android:layout_width="match_parent"

 android:inputType="numberDecimal">

 </EditText>

 <EditText

 android:layout_height="wrap_content"

 android:layout_weight="1"

 android:layout_marginLeft="5pt"

 android:id="@+id/etNum2"

 android:layout_width="match_parent"

 android:inputType="numberDecimal">

 </EditText>

 </LinearLayout>

 <LinearLayout

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:id="@+id/linearLayout2"

 android:layout_marginTop="3pt"

 android:layout_marginLeft="5pt"

 android:layout_marginRight="5pt">

 <Button

 android:layout_height="wrap_content"

 android:layout_width="match_parent"

 android:layout_weight="1"

 android:text="+"

 android:textSize="8pt"

 android:id="@+id/btnAdd">

 </Button>

 <Button

 android:layout_height="wrap_content"

 android:layout_width="match_parent"

 android:layout_weight="1"

 android:text="-"

 android:textSize="8pt"

 android:id="@+id/btnSub">

 </Button>

 <Button

 android:layout_height="wrap_content"

 android:layout_width="match_parent"

Page 7 of 18

 android:layout_weight="1"

 android:text="*"

 android:textSize="8pt"

 android:id="@+id/btnMult">

 </Button>

 <Button

 android:layout_height="wrap_content"

 android:layout_width="match_parent"

 android:layout_weight="1"

 android:text="/"

 android:textSize="8pt"

 android:id="@+id/btnDiv">

 </Button>

 </LinearLayout>

 <TextView

 android:layout_height="wrap_content"

 android:layout_width="match_parent"

 android:layout_marginLeft="5pt"

 android:layout_marginRight="5pt"

 android:textSize="12pt"

 android:layout_marginTop="3pt"

 android:id="@+id/tvResult"

 android:gravity="center_horizontal">

 </TextView>

</LinearLayout>

MainActivity.java

public class MainActivity extends Activity implements OnClickListener {

 EditTextetNum1;

 EditTextetNum2;

 Button btnAdd;

 Button btnSub;

 Button btnMult;

 Button btnDiv;

 TextViewtvResult;

 String oper = "";

 /** Called when the activity is first created. */

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 // find the elements

 etNum1 = (EditText) findViewById(R.id.etNum1);

 etNum2 = (EditText) findViewById(R.id.etNum2);

 btnAdd = (Button) findViewById(R.id.btnAdd);

 btnSub = (Button) findViewById(R.id.btnSub);

 btnMult = (Button) findViewById(R.id.btnMult);

Page 8 of 18

 btnDiv = (Button) findViewById(R.id.btnDiv);

 tvResult = (TextView) findViewById(R.id.tvResult);

 // set a listener

 btnAdd.setOnClickListener(this);

 btnSub.setOnClickListener(this);

 btnMult.setOnClickListener(this);

 btnDiv.setOnClickListener(this);

 }

 @Override

 public void onClick(View v) {

 // TODO Auto-generated method stub

 float num1 = 0;

 float num2 = 0;

 float result = 0;

 // check if the fields are empty

 if (TextUtils.isEmpty(etNum1.getText().toString())

 || TextUtils.isEmpty(etNum2.getText().toString())) {

 return;

 }

 // read EditText and fill variables with numbers

 num1 = Float.parseFloat(etNum1.getText().toString());

 num2 = Float.parseFloat(etNum2.getText().toString());

 // defines the button that has been clicked and performs the corresponding operation

 // write operation into oper, we will use it later for output

 switch (v.getId()) {

 case R.id.btnAdd:

 oper = "+";

 result = num1 + num2;

 break;

 case R.id.btnSub:

 oper = "-";

 result = num1 - num2;

 break;

 case R.id.btnMult:

 oper = "*";

 result = num1 * num2;

 break;

 case R.id.btnDiv:

 oper = "/";

 result = num1 / num2;

 break;

 default:

 break;

 }

 // form the output line

 tvResult.setText(num1 + " " + oper + " " + num2 + " = " + result);

 }

Page 9 of 18

}

5.Differentiate the basics of android UI design and location based services.

Android UI design Location based services

Uses all view components Uses only map view

Displays all components and retrieves data Provides customized services and search

Data is retrieved by UI components Data is retrieved as latitude and longitude

No need of additional jars Needs map.jar

No need of any translation Geodecoder is used

6.Write a program in android for sending Email.

One can set email through Android program. Following are the steps involved:

Create a new android application.

Add the following statements in to the main.xml file:

<Button

android:id=”@+id/btnSendEmail”

android:layout_width=”fill_parent”

android:layout_height=”wrap_content”

android:text=”Send Email” />

Add the following statements in bold to the MainActivity.java file:

import android.content.Intent;

import android.net.Uri;

import android.view.View;

import android.widget.Button;

public class MainActivity extends Activity

{

Button btnSendEmail;

/** Called when the activity is first created. */

@Override

public void onCreate(Bundle savedInstanceState)

{

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

btnSendEmail = (Button) findViewById(R.id.btnSendEmail);

btnSendEmail.setOnClickListener(new View.OnClickListener()

{

public void onClick(View v)

{

String[] to = {“weimenglee@learn2develop.net”,

“weimenglee@gmail.com”};

String[] cc = {“course@learn2develop.net”};

sendEmail(to,cc,“Hello”, “Hello my friends!”);

}

});

}

//---sends an SMS message to another device---

private void sendEmail(String[] emailAddresses, String[]

carbonCopies, String subject, String message)

{

Intent emailIntent = new Intent(Intent.ACTION_SEND);

emailIntent.setData(Uri.parse(“mailto:”));

String[] to = emailAddresses;

String[] cc = carbonCopies;

emailIntent.putExtra(Intent.EXTRA_EMAIL, to);

Page 10 of 18

emailIntent.putExtra(Intent.EXTRA_CC, cc);

emailIntent.putExtra(Intent.EXTRA_SUBJECT, subject);

emailIntent.putExtra(Intent.EXTRA_TEXT, message);

emailIntent.setType(“message/rfc822”);

startActivity(Intent.createChooser(emailIntent,“Email”));

}

}

7. What are notifications? Explain various types of notifications.

Notification is a user interface element that will display outside of any other app’s normal UI to indicate that

an event has occurred. Users can choose to view the notification while using other apps and respond to it

when it’s convenient for them.

Android notification will be displayed in the Notification area and to see the details regarding the

notification, the user can expand it in by open the Notification drawer.

Following are the three types of android notifications,

1. Toast Notification – Shows message that fades away after a few seconds. (Background type also)

2. Status Notification – Shows notification message and displayed till user action. (Background type

also)

3. Dialog Notification – Comes out of an active Activity.

(Background type) – is result of some background Service event that may not be related to current activity.

That is, we can use this notification type in Service also, added to Activity.

1. Toast NotificationThis type of notification will be used when there is no need of user interaction on

seeing this message. This message occupies a rectangular box which will fade in and fade out after some

time. The size of the box depends on the message content.

http://developer.android.com/reference/android/app/Notification.html
https://javapapers.com/android/android-notifications/#toastnotification
https://javapapers.com/android/android-notifications/#statusnotification
https://javapapers.com/android/android-notifications/#dialognotification

Page 11 of 18

For example, when user creates an event using calendar application it will notify the user as “Event Created”

after the create action is completed. Refer the image.

Toast notification is best suited for one way information to the use where we don’t expect any response.

Toast message does not stop or disturb the current activity, just the message is shown in parallel.

Example for Android Toast Notification

Toast notification can be created from an Activity or Service. Toast is the class to be used as below,

ContextappContext=getApplicationContext();

ToastmailMessage=Toast.makeText(appContext,“EmailReceived.”,Toast. LENGTH_LONG);

mailMessage.setGravity(Gravity.TOP,0,0);//optional

mailMessage.show();

 duration – can be either LENGTH_SHORT or LENGTH_LONG

 setGravity – is used to position the message in screen. By default it shows at bottom centered. First

parameter is Gravity a constant identifying location in container broadly like TOP | BOTTOM |

LEFT … , second and third parameters are x, y-offset.

2. Status Notification

Status notification is used to display rich notification information especially from a (background) Service

where user can interact. It will be shown as an icon with an alert in the status bar. When the user pulls down

the status bar, the list of notification will be in the notification window.

Page 12 of 18

For example when a SMS message is received a message icon is shown in the status bar. On pull down, the

list of unread messages will be shown in the notification window.

Example shown in image: On snoozing the alarm, corresponding notification will be will be sent to the

status bar with notification icon. A ticker message will be shown next to the icon for some time. In the

image the clock icon represents the notification about the snooze event and the ticker message is shown next

to the clock icon.

1. Create a simple notification with an icon alert. Alert can be a ticker text message or sound or

vibration or flashlight.

2. Associate notification message with details shown on message expansion to activity/intent.

Notification message can be a list and it is identified using a unique identifier. Existing messages can

be updated too.

3. Register the notification message with notification manager. NotificationManager is a system service

that manages all the notifications.

Example for Android Status Notification

//part 1 – notification icon alert

int icon =R.drawable.notification_icon;

Page 13 of 18

// a ticker text message or sound or vibration or flashlight can be used for alert

CharSequence ticker =“Hi”;

longshowAt=System.currenttimeMillis();//immediately

Notificationnotification=newNotification(icon, ticker,showAt);

//part 2 – associate notification message with details shown on message expansion to activity/intent

CharSequencenotificationTitle="Notification:";

CharSequencenotificationMessage="SMS Received.";

Intentintent=newIntent(this,Activity.class);

PendingIntentobjPendingIntent=PendingIntent.getActivity(this,0, intent,0);

Contextctx=getApplicationContext();

notification.setLatestEventInfo(ctx,notificationTitle,notificationMessage,objPendingIntent);

//part 3 – register the notification message with notification manager

privatestaticfinalintnotificationIdentifier=101;//an unique number set by developer to identify a notification,

using this notification can be updated/replaced

NotificationManagernotificationManager=(NotificationManager)

getSystemService(Context.NOTIFICATION_SERVICE);

notificationManager.notify(notificationIdentifier,objNotification);

Notification Alerts

Sound:

notification.defaults|=Notification.DEFAULT_SOUND;

//use the above default or set custom valuse as below

notification.sound=Uri.parse("file:///sdcard/notification/robo_da.mp3");

Vibration:

notification.defaults|=Notification.DEFAULT_VIBRATE;

//use the above default or set custom valuse as below

Page 14 of 18

long[] vibrate ={0,200,100,200};

notification.vibrate= vibrate;

Flash Light:

notification.defaults|=Notification.DEFAULT_LIGHTS;

//use the above default or set custom valuse as below

notification.ledARGB=0xffff0000;//red color

notification.ledOnMS=400;

notification.ledOffMS=500;

notification.flags|=Notification.FLAG_SHOW_LIGHTS;

3. Dialog Notification

Dialog notification is not an exact type of notification. Dialog is common in window based UIs. A small

panel that appears on top of an active window and user will not be able to do any other activity other than

acting on the dialog. This is same here too. From an android Activity a dialog will be launched and the

Activity loses focus. User should give input and work on the dialog. Once the user action is completed the

dialog is closed. Dialog has many uses and one among them is notification to user.

Page 15 of 18

For example we can show a progress bar which is a notification to user. We can ask for confirmation ‘yes’

or ‘no’ from user and this is a type of notification. For all these purposes dialog notification is used. There

are many types of dialogs available such as,

 AlertDialog

 ProgressDialog

 DatePickerDialog

 TimePickerDialog

8. Write a program to demonstrate autocompleteview with a list of places.

package com.example.autocomplete;

import android.app.Activity;

import android.os.Bundle;

import android.view.Menu;

import android.view.MenuItem;

import android.widget.ArrayAdapter;

import android.widget.AutoCompleteTextView;

public class MainActivity extends Activity {

 String[] presidents = {

 "Dwight D. Eisenhower",

Page 16 of 18

 "John F. Kennedy",

 "Lyndon B. Johnson",

 "Richard Nixon",

 "Gerald Ford",

 "Jimmy Carter",

 "Ronald Reagan",

 "George H. W. Bush",

 "Bill Clinton",

 "George W. Bush",

 "Barack Obama"

 };

 /** Called when the activity is first created. */

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 ArrayAdapter<String> adapter = new ArrayAdapter<String>(this,

 android.R.layout.simple_dropdown_item_1line, presidents);

 AutoCompleteTextView textView = (AutoCompleteTextView)

 findViewById(R.id.txtCountries);

 textView.setThreshold(3);

 textView.setAdapter(adapter);

 }

}

9. Write in details how to display Google maps in your own android applications.

Google Maps is one of the many applications bundled with the Android platform. In addition

to simply using the Maps application, you can also embed it into your own applications and

make it do some very cool things. This section describes how to use Google Maps in your

Android applications and programmatically perform the following:

Change the views of Google Maps.

Obtain the latitude and longitude of locations in Google Maps.

Perform geocoding and reverse geocoding (translating an address to latitude and

longitude and vice versa).

Add markers to Google Maps.

We will discuss how to build a project using maps.

Creating the Project: Create a new android project. In order to use Google Maps in your

Android application, you need to ensure that you check the Google APIs as your build

target. Google Maps is not part of the standard Android SDK, so you need to find it in the

Google APIs add-on. If LBS is the name of your project, then you can see the additional

JAR file (maps.jar) located under the Google APIs folder as below–

Obtaining the Maps API Key: Beginning with the Android SDK release v1.0, you need to

apply for a free Google Maps API key before you can integrate Google Maps into your

Android application. When you apply for the key, you must also agree to Google’s terms of

use, so be sure to read them carefully.

Page 17 of 18

First, if you are testing the application on the Android Emulator or an Android device

directly connected to your development machine, locate the SDK debug certificate located

in the default folder (C:\Users\<username>\.android for Windows 7 users). You can verify

the existence of the debug certificate by going to Eclipse and selecting Window ➪Preferences. Expand the

Android item and select Build (as shown in figure above). On the

right side of the window, you will be able to see the debug certificate’s location.

The filename of the debug keystore is debug.keystore. This is the certificate that Eclipse

uses to sign your application so that it may be run on the Android Emulator or devices.

10. Write a program to demonstrate the progress bar along with the status of completion

package com.example.progressbar1;

import android.app.Activity;

import android.os.Bundle;

import android.view.Menu;

import android.view.MenuItem;

import android.view.View;

import android.os.Handler;

import android.widget.ProgressBar;

import android.app.Activity;

import android.os.Bundle;

import android.view.Menu;

import android.view.MenuItem;

import android.os.Handler;

import android.widget.ProgressBar;

public class MainActivity extends Activity {

 private static int progress;

 private ProgressBar progressBar;

 private int progressStatus = 0;

 private Handler handler = new Handler();

 /** Called when the activity is first created. */

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 progress = 0;

 progressBar = (ProgressBar) findViewById(R.id.progressbar);

 progressBar.setMax(200);

 //---do some work in background thread---

Page 18 of 18

 new Thread(new Runnable()

 {

 public void run()

 {

 //---do some work here---

 while (progressStatus < 100)

 {

 progressStatus = doSomeWork();

 handler.post(new Runnable()

 {

 public void run()

 {

 progressBar.setProgress(progressStatus);

 }

 });

 }

 //---hides the progress bar---

 handler.post(new Runnable()

 {

 public void run()

 {

 //---0 - VISIBLE; 4 - INVISIBLE; 8 - GONE---

 progressBar.setVisibility(View.GONE);

 }

 });

 }

 //---do some long lasting work here---

 private int doSomeWork()

 {

 try {

 //---simulate doing some work---

 Thread.sleep(500);

 } catch (InterruptedException e)

 {

 e.printStackTrace();

 }

 return ++progress;

 }

 }).start();

 }

 }

	Example for Android Toast Notification
	2. Status Notification
	Example for Android Status Notification
	Notification Alerts

	3. Dialog Notification

