
Page 1 of 13

CMR

INSTITUTE OF

TECHNOLOGY

USN

Internal Assessment Test 2 – June 2022

Sub: Programming Using C#
Sub

Code:
20MCA42

Date: 4/06/2022 Duration: 90 min’s
Max

Marks:
50 Sem: IV Branch: MCA

Note : Answer FIVE FULL Questions, choosing ONE full question from each

Module

PART I MARKS

OBE

CO

RBT

1 Make a short note on Inheritance giving example.

OR

[10]
CO1 L1

2

Explain how to defining partial class and partial method with an example.

[10]
CO1 L2

3

PART II

What are the three pillars of object oriented programming in C#?

OR

[10]

CO1 L2

4

What are the two ways of enforcing encapsulation? Give examples for both

the methods

[10]

CO1 L2

5
PART III

Write a short note on:

 i. Static data ii. Virtual method iii. base keyword

OR

[10]
CO1 L2

6 Explain :

a) Classical Inheritance

b) Containment / Delegation model

[10]
CO1 L2

7
PART IV

Make a short note on abstraction.

OR

[10]

CO1 L2

8

Explain :

i. Method Overloading

ii. Operator Overloading

[10]

CO1 L2

9
PART V

Write a program to overload + and – operators for adding and subtracting two

square matrices.

OR

[10]
CO1 L3

10 What is Interface? Explain how to create interfaces and implemented with an

example.

[10] CO1 L3

Page 2 of 13

CMR

INSTITUTE OF

TECHNOLOGY

USN

Internal Assessment Test 2 – June 2022

Sub: Programming Using C#
Sub

Code:

Date: 4/06/2022 Duration: 90 min’s Max Marks: 50 Sem: IV Branch:

Note : Answer FIVE FULL Questions, choosing ONE full question from each Module

PART I MARKS

1 Make a short note on Inheritance giving example.

 Inheritance provides you to reuse existing code and fast implementation time. The relationship

between two or more classes is termed as Inheritance. In essence, inheritance allows to extend the behavior

of a base (or parent/super) class by enabling a subclass to inherit core functionality (also called a derived

class/child class). All public or protected variables andmethods in the base class can be called in the derived

classes.

Inheritance and Constructors: As you know, a constructor is a special method of a class, which is used to

initialize the members of the same class. A constructor is called by default whenever an object of a class is

created. It is important to note that a Base class constructors are not inherited by derived classes. Thus cannot

instantiate a base constructor using derived class object, so we need the “base” keyword to access

constructor of the base class from within a derived class.

Inheritance is of four types, which are as follows: i. Single Inheritance: Refers to inheritance in which there

is only one base class and one derived class. This means that a derived class inherits properties from single

base class. ii. Hierarchical Inheritance: Refers to inheritance in which multiple derived classes are inherited

from the same base class. iii. Multilevel Inheritance: Refers to inheritance in which a child class is derived

from a class, which in turn is derived from another class. iv. Multiple Inheritance: Refers to inheritance in

which a child class is derived from multiple baseclass.C# supports single, hierarchical, and multilevel

inheritance because there is only a single base class. It does not support multiple inheritance directly.

[10]

2 Explain how to defining partial class and partial method with an example. [10]

Page 3 of 13

 The partial class is a class that enables you to specify the definition of a class, structure, or interface in

two or more source files. All the source files, each containing a section of class definition, combine when the

application is complete. You may need a partial class when developers are working on large projects. A

partial class distributes a class over multiple separate files; allowing developers to work on the class

simultaneously. You can declare a class as partial by using the “partial” keyword. All the divided sections of

the partial class must be available to form the final class when you compile the program. Let’s see that in

above figure. All the section must have the same accessibility modifiers, such as public or private.

 Partial method are only allowed in partial types, such as classes and structs. A partial method consists of 2

parts that listed below: Deals with defining the partial method Deals with implementing the partial

method declaration Rules: Must have a void return type No access modifier are allowed for declaring a

partialmethod except for static Partial methods are private by default

3

PART II

What are the three pillars of object oriented programming in C#?

i. Encapsulation : How does this language hide an object’s internal implementation?

ii. ii. Inheritance : How does this language promote code reuse?

iii. iii. Polymorphism : How does this language let you treat related objects in a similar way?

[10]

4

What are the two ways of enforcing encapsulation? Give examples for both the methods

Encapsulation using accessors and mutators: Rather than defining the data in the form of public, we can

[10]

Page 4 of 13

declare those fields as private so that we achieved encapsulation. The Private data are manipulated using

accessor (get: store the data to private members) and mutator (set: to interact with the variable) methods.

Syntax:

 set { }

 get { }

. A property defined with both a getter and a setter is called a read-write property. A property defined with

only a getter is called a read-only property. A property defined with only a setter is called a write-only

property.

Encapsulation using Properties: i. Write-Only Property: Properties can be made write-only. This is

accomplished by having only a set mutator in the property implementation.

Example:

class Student

{

string name, branch, usn;

public string Studusn

{ set{usn = value;} }

 }

 In this example, the property “Studusn” is having only set (mutator) but not get (accessor). So Studusn can

called as a “write-only property”

. ii. Creating Read-Only Fields: Properties can be made read-only. This is accomplished by having only get

accessor in property implementation. Example 2.4: In the below example, the property “Studusn” is having

only get (accessor) but not set(mutator). So can call Studusn as a “read-only property”.

class Student{ string name, branch, usn; public string Studusn{ set{usn = value;} }

Page 5 of 13

5 Write a short note on:

 i. Static data ii. Virtual method iii. base keyword

Static data members:

When we declare a static field inside a class, it can be initialized with a value or all un-initialized static fields

automatically get initialized to their default values when the class is loaded at first time. Characteristics: It is

visible only within the class, but its lifetime is the entire program. Only one copy of static data member will

exists for the entire class and is shared by all the objects of that class. No matter how many objects of a class

are created. All static variables are initialized to zero when the first object of its class is created.

Page 6 of 13

ii. Virtual method

C# virtual method is a method that can be redefined in derived classes. In C#, a virtual method has an

implementation in a base class as well as derived the class. It is used when a method's basic functionality is

the same but sometimes more functionality is needed in the derived class. A virtual method is created in the

base class that can be overriden in the derived class. We create a virtual method in the base class using the

virtual keyword and that method is overriden in the derived class using the override keyword.When a method

is declared as a virtual method in a base class then that method can be defined in a base class and it

is optional for the derived class to override that method. The overriding method also provides more than one

form for a method. Hence it is also an example for polymorphism. When a method is declared as a virtual

method in a base class and that method has the same definition in a derived class then there is no need to

override it in the derived class. But when a virtual method has a different definition in the base class and the

derived class then there is a need to override it in the derived class.

When a virtual method is invoked, the run-time type of the object is checked for an overriding member. The

overriding member in the most derived class is called, which might be the original member, if no derived

class has overridden the member.

iii. base keyword

 C#, base keyword is used to access fields, constructors and methods of base class.

C# base keyword: accessing base class field

1. using System;

2. public class Animal{

3. public string color = "white";

4. }

5. public class Dog: Animal

6. {

Page 7 of 13

7. string color = "black";

8. public void showColor()

9. {

10. Console.WriteLine(base.color);

11. Console.WriteLine(color);

12. }

13.

14. }

15. public class TestBase

16. {

17. public static void Main()

18. {

19. Dog d = new Dog();

20. d.showColor();

21. }

22. }

C# base keyword example: calling base class method

By the help of base keyword, we can call the base class method also. It is useful if base and derived classes

defines same method. In other words, if method is overridden. If derived class doesn't define same method,

there is no need to use base keyword. Base class method can be directly called by the derived class method.

1. using System;

2. public class Animal{

3. public virtual void eat(){

4. Console.WriteLine("eating...");

5. }

6. }

7. public class Dog: Animal

8. {

9. public override void eat()

10. {

11. base.eat();

12. Console.WriteLine("eating bread...");

13. }

14.

15. }

16. public class TestBase

17. {

18. public static void Main()

19. {

Page 8 of 13

20. Dog d = new Dog();

21. d.eat();

22. }

23. }

C# inheritance: calling base class constructor internally

Whenever you inherit the base class, base class constructor is internally invoked. using System;

1. public class Animal{

2. public Animal(){

3. Console.WriteLine("animal...");

4. }

5. }

6. public class Dog: Animal

7. {

8. public Dog()

9. {

10. Console.WriteLine("dog...");

11. }

12.

13. }

14. public class TestOverriding

15. {

16. public static void Main()

17. {

18. Dog d = new Dog();

19.

20. }

21. }

6 Explain :

a) Classical Inheritance

b) Containment / Delegation model

Classical inheritance (“is-a” relationship): When “is-a” relationship have established between classes, we

are building a dependency between types. The basic idea behind classical inheritance is that new classes may

extend the functionality of other classes.

Assume that we wish to define two additional classes to model Animal and Dog. The hierarchy looks like as

shown below and we notice that Animal “is-a” Mammal, Dog IS-A Animal; Hence dog IS-A mammal as

well. In “is-a” model, base classes are used to define general characteristics that are common to all

Page 9 of 13

subclasses and classes are extended by using “:” operator. The derived classes inherit the base class's

properties and methods and clients of the derived class have no knowledge of the base class.

Containment / Delegation model (“Has-A”): The “HAS-A” relationship specifies how one class is made

up of other classes

Consider we have two different classes Engine and a Car when both of these entities share each other’s

object for some work and at the same time they can exists without each other’s dependency(havingtheir own

life time) and there should be no single owner both have to be an independent from each other than type of

relationship is known as "has-a" relationship i.e. Association.

7 Make a short note on abstraction.

Abstraction is the process of hiding the details of a particular concept or object from a user and exposing

only the essential features. The characteristics of abstraction are as follows: Decomposing complex

systems into smaller componentsLet’s learn about the abstract classes and methods in detail. Managing

the complexity of the code

Abstract Classes: Classes can be declared as abstract by putting the keyword “abstract” before the class

definitions. The main purpose of the Abstract classes is to make classes that only represent base classes,

and don’t want anyone to create objects of these class types. An abstract class cannot be instantiated

because cannot create an object of the class.

Characteristics: Restricts instantiation, implying that you cannot create an object of an abstract class.

Page 10 of 13

Allows you to define abstract as well as non-abstract members in it

 Requires at least one abstract method in it

 Restrict the use of sealed keyword

 Possesses public access specifier; therefore, it can be used anywhere in a program

Abstract methods:

Abstract methods have no implementation, so the method definitions is followed by a semicolon instead of

a normal method block. Derived classes of the abstract class must implement all abstract methods.

Characteristics:

Restricts its implementation in an abstract derived class

Allows implementation in a non-abstract derived class

 Requires declaration in an abstract class only

Restrict declaration with static and virtual keywords

 Allows you to override a virtual method.

8 Explain :

i. Method Overloading

ii. Operator Overloading

i. Method overloading: In method overloading, can be define many methods with the same name but

different signatures. A method signature is the combination of the method’s name along with the number,

type, and order of the parameters.

In this application, the Area() method of Shape class is overloaded for calculating the area of square,

rectangle, circle and triangle shapes. In the Main() method, the Area()method is called multiple times by

passing different arguments.

Page 11 of 13

9 Write a program to overload + and – operators for adding and subtracting two square matrices.

// Source Code starts
using System;

class Matrix

{

 public const int DimSize = 3;

 private double[,] m_matrix = new double[DimSize, DimSize];

 // allow callers to initialize

 public double this[int x, int y]

 {

 get { return m_matrix[x, y]; }

 set { m_matrix[x, y] = value; }

 }

 // let user add matrices

 public static Matrix operator +(Matrix mat1, Matrix mat2)

 {

 Matrix newMatrix = new Matrix();

 for (int x=0; x < DimSize; x++)

 for (int y=0; y < DimSize; y++)

 newMatrix[x, y] = mat1[x, y] + mat2[x, y];

 return newMatrix;

 }

 public static Matrix operator -(Matrix mat1, Matrix mat2)

 {

 Matrix newMatrix = new Matrix();

 for (int x=0; x < DimSize; x++)

 for (int y=0; y < DimSize; y++)

 newMatrix[x, y] = mat1[x, y] - mat2[x, y];

 return newMatrix;

 }

Page 12 of 13

}

class MatrixTest

{

 // used in the InitMatrix method.

 public static Random m_rand = new Random();

 // test Matrix

 static void Main()

 {

 Matrix mat1 = new Matrix();

 Matrix mat2 = new Matrix();

 // init matrices with random values

 InitMatrix(mat1);

 InitMatrix(mat2);

 // print out matrices

 Console.WriteLine("Matrix 1: ");

 PrintMatrix(mat1);

 Console.WriteLine("Matrix 2: ");

 PrintMatrix(mat2);

 // perform operation and print out

 results

 Matrix mat3 = mat1 + mat2;

 Matrix mat4 = mat1 - mat2;

 Console.WriteLine();

 Console.WriteLine("Matrix 1 + Matrix

 2 = ");

 PrintMatrix(mat3);

 PrintMatrix(mat4);

 Console.ReadLine();

 }

 // initialize matrix with random values

 public static void InitMatrix(Matrix mat)

 {

 for (int x=0; x < Matrix.DimSize; x++)

 for (int y=0; y < Matrix.DimSize; y++)

 mat[x, y] = m_rand.NextDouble();

 }

 // print matrix to console

 public static void PrintMatrix(Matrix mat)

 {

 Console.WriteLine();

 for (int x=0; x < Matrix.DimSize; x++)

 {

 Console.Write("[");

 for (int y=0; y < Matrix.DimSize; y++)

 {

 // format the output

 Console.Write("{0,8:#.000000}", mat[x, y]);

 if ((y+1 % 2) < 3)

 Console.Write(", ");

 }

 Console.WriteLine("]");

 }

 Console.WriteLine();

 }

Page 13 of 13

}

10 What is Interface? Explain how to create interfaces and implemented with an example.

When an interface is implemented by a base class, then the derived class of the base class

automaticallyinherits method of the interface. You can initialize an object of the interface by type casting the

object of the derived class with the interface itself.

