
Page 1 of 20

CMR

INSTITUTE OF

TECHNOLOGY

USN

Internal Assessment Test 3 – Sept. 2022

Sub: Mobile Applications
Sub

Code:
20MCA263

Date: 23/9/2022 Duration: 90 min’s Max Marks: 50 Sem: II Branch: MCA

Note : Answer FIVE FULL Questions, choosing ONE full question from each Module

 PART I MARKS

OBE

CO

RBT

1 Define service. How do you create your own service in Android? Explain with

a snippet code. OR

[10]
CO4 L1,L2

2 What is the process for binding activities to services in android application?

[10]
CO5 L2

3

PART II

Explain the architecture of IOS.

OR

[10]

CO4 L2

4

What is a program level in iOS? Discuss the various program levels available

for an iOS develop.

[5]
CO4 L1

CMR

INSTITUTE OF

TECHNOLOGY

USN

Internal Assessment Test 3 – Sept. 2022

Sub: Mobile Applications
Sub

Code:
20MCA263

Date: 23/9/2022 Duration: 90 min’s Max Marks: 50 Sem: II Branch: MCA

Note : Answer FIVE FULL Questions, choosing ONE full question from each Module

 PART I MARKS

OBE

CO

RBT

1 Define service. How do you create your own service in Android? Explain with

a snippet code. OR

[10]
CO4 L1,L2

2 What is the process for binding activities to services in android application?

[10]
CO5 L2

3
PART II

Explain the architecture of IOS

OR

[10]

CO4 L2

4

What is a program level in iOS? Discuss the various program levels available

for an iOS develop.

[5]
CO4 L1

Page 2 of 20

5
PART III

With a neat diagram, explain iOS project.

OR

[10]

CO5

L2

6 Describe the anatomy of a windows phone 7 App.

[10] CO4 L2

7
PART IV

Write a note on other useful windows phone Thing.

[10]

CO4

L2

8
OR

Implement an application that creates an alert upon receiving a message.

[10]

CO2

L5

9
PART V

How to build derby app in windows phone 7? Explain.

OR

[10] CO5 L3

10 Create an application to compute the tax of an employee.

[10] CO2 L5

5
PART III

With a neat diagram, explain iOS project.

OR

[10]

CO5

L2

6 Describe the anatomy of a windows phone 7 App.

[10] CO4 L2

7
PART IV

Write a note on other useful windows phone Thing.

[10]

CO4

L2

8

OR

Implement an application that creates an alert upon receiving a message.

[10]

CO2

L5

9
PART V

How to build derby app in windows phone 7? Explain.

OR

[10] CO5 L3

10 Create an application to compute the tax of an employee.

[10] CO2 L5

Page 3 of 20

 1.Define service. How do you create your own service in Android? Explain with a snippet code.

A service is an application in Android that runs in the background without needing to

interact with the user. For example, while using an application, you may want to play some

background music at the same time. In this case, the code that is playing the background

music has no need to interact with the user, and hence it can be run as a service. Services

are also ideal for situations in which there is no need to present a UI to the user.

Following are the steps involved in creating own service.

 Create a new android application.

 Add a new class file to the project and name it MyService.java. Write the following

code in it:

package net.learn2develop.Services;

import android.app.Service;

import android.content.Intent;

import android.os.IBinder;

import android.widget.Toast;

public class MyService extends Service

{

@Override

public IBinder onBind(Intent arg0)

{

return null;

}

public int onStartCommand(Intent intent, int flags, int startId)

{

Toast.makeText(this,“ServiceStarted”,Toast.LENGTH_LONG).show();

return START_STICKY;

}

public void onDestroy()

{

super.onDestroy();

Toast.makeText(this,“ServiceDestroyed”,Toast.LENGTH_LONG).show();

}

}

The onBind() method enables you to bind an activity to a service. This in turn enables

an activity to directly access members and methods inside a service. The

onStartCommand() method is called when you start the service explicitly using the

startService() method. This method signifies the start of the service, and you code it

to do the things you need to do for your service. In this method, you returned the

constant START_STICKY so that the service will continue to run until it is explicitly

stopped. The onDestroy() method is called when the service is stopped using the

stopService() method. This is where you clean up the resources used by your

service.

 In the AndroidManifest.xml file, add the following statement :

<service android:name=”.MyService” />

 In the activity_main.xml file, add the following statements in bold:

<Button android:id=”@+id/btnStartService”

android:layout_width=”fill_parent”

android:layout_height=”wrap_content”

android:text=”Start Service” />

<Button android:id=”@+id/btnStopService”

android:layout_width=”fill_parent”

android:layout_height=”wrap_content”

android:text=”Stop Service” />

 Add the following statements in bold to the MainActivity.java file:

import android.content.Intent;

Page 4 of 20

import android.view.View;

import android.widget.Button;

public class MainActivity extends Activity

{

public void onCreate(Bundle savedInstanceState)

{

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

Button btnStart = (Button) findViewById(R.id.btnStartService);

btnStart.setOnClickListener(new View.OnClickListener()

{

public void onClick(View v)

{

startService(new Intent(getBaseContext(), MyService.class));

}

});

Button btnStop = (Button) findViewById(R.id.btnStopService);

btnStop.setOnClickListener(new View.OnClickListener()

{

public void onClick(View v)

{

stopService(new Intent(getBaseContext(), MyService.class));

}

});

}

}

2.What is the process for binding activities to services in android application?

Real-world services are usually more sophisticated, requiring the passing of data so that they can do the job

correctly for you. Using the service demonstrated earlier that downloads a set of files, suppose you now

want to let the calling activity determine what files to download, instead of hard coding them in the service.

Here is what you need to do.

First, in the calling activity, you create an Intent object, specifying the service name:

Button btnStart = (Button) findViewById(R.id.btnStartService);

btnStart.setOnClickListener(new View.OnClickListener()

{

public void onClick(View v)

{

 Intent intent = new Intent(getBaseContext(), MyService.class);

}

});

You then create an array of URL objects and assign it to the Intent object through its putExtra() method.

Finally, you start the service using the Intent object:

Button btnStart = (Button) findViewById(R.id.btnStartService);

btnStart.setOnClickListener(new View.OnClickListener()

{

public void onClick(View v)

{

Intent intent = new Intent(getBaseContext(), MyService.class);

try

{

URL[] urls = new URL[]

Page 5 of 20

{

new URL(“http://www.amazon.com/somefiles.pdf”),

new URL(“http://www.wrox.com/somefiles.pdf”),

new URL(“http://www.google.com/somefiles.pdf”),

new URL(“http://www.learn2develop.net/somefiles.pdf”)

};

intent.putExtra(“URLs”, urls);

} catch (MalformedURLException e)

{

e.printStackTrace();

}

startService(intent);

}

});

Note that the URL array is assigned to the Intent object as an Object array. On the

service’s end, you need to extract the data passed in through the Intent object in the

onStartCommand() method:

@Override

public int onStartCommand(Intent intent, int flags, int startId)

{

// We want this service to continue running until it is explicitly

// stopped, so return sticky.

Toast.makeText(this, “Service Started”, Toast.LENGTH_LONG).show();

Object[] objUrls = (Object[]) intent.getExtras().get(“URLs”);

URL[] urls = new URL[objUrls.length];

for (int i=0; i<objUrls.length-1; i++)

{

urls[i] = (URL) objUrls[i];

}

new DoBackgroundTask().execute(urls);

return START_STICKY;

}

The preceding first extracts the data using the getExtras() method to return a Bundle object. It then uses the

get() method to extract out the URL array as an Object array.

Because in Java you cannot directly cast an array from one type to another, you have to create a loop and

cast each member of the array individually. Finally, you execute the background task by passing the URL

array into the execute() method.

This is one way in which your activity can pass values to the service. As you can see, if you have relatively

complex data to pass to the service, you have to do some additional work to ensure that the data is passed

correctly. A better way to pass data is to bind the activity directly to the service so that the activity can call

any public members and methods on the service directly.

3.Explain the architecture of IOS

Page 6 of 20

Architecture of IOS

• Lower layers gives the basic services which all application relies on and higher
level layer gives sophisticated graphics and interface related services.

• Apple provides most of its system interfaces in special packages called
frameworks.

• A framework is a directory that holds a dynamic shared library that is .a files,
related resources like as header files, images, and helper apps required to
support that library.

• Every layer have a set of Framework which the developer use to construct the
applications.

Cocoa Touch Layer
• EventKit framework – gives view controllers for showing the standard system interfaces for

seeing and altering calendar related events

• GameKit Framework – implements support for Game Center which allows users share their game
related information online

• iAd Framework – allows you deliver banner-based advertisements from your app.

• MapKit Framework – gives a scrollable map that you can include into your user interface of app.

• PushKitFramework – provides registration support for VoIP apps.

• Twitter Framework – supports a UI for generating tweets and support for creating URLs to access
the Twitter service.

• UIKit Framework – gives vital infrastructure for applying graphical, event-driven apps in iOS.
Some of the Important functions of UI Kit framework:

-Multitasking support.
– Basic app management and infrastructure.
– User interface management
– Support for Touch and Motion event.
– Cut, copy and paste support and many more.

Page 7 of 20

Media Layer Graphics, Audio and Video technology is enabled using the Media Layer.
Graphics Framework:

• UIKit Graphics – It describes high level support for designing images and also used for animating the content of your views.

• Core Graphics framework – It is the native drawing engine for iOS apps and gives support for custom 2D vector and image based
rendering.

• Core Animation – It is an initial technology that optimizes the animation experience of your apps.

• Core Images – gives advanced support for controlling video and motionless images in a nondestructive way

• OpenGl ES and GLKit – manages advanced 2D and 3D rendering by hardware accelerated interfaces

• Metal – It permits very high performance for your sophisticated graphics rendering and computation works. It offers very low
overhead access to the A7 GPU.

Audio Framework:

• Media Player Framework – It is a high level framework which gives simple use to a user’s iTunes library and support for playing
playlists.

• AV Foundation – It is an Objective C interface for handling the recording and playback of audio and video.

• OpenAL – is an industry standard technology for providing audio.

Video Framework

• AV Kit – framework gives a collection of easy to use interfaces for presenting video.

• AV Foundation – gives advanced video playback and recording capability.

• Core Media – framework describes the low level interfaces and data types for operating media.

Core Services Layer

• Address book framework – Gives programmatic access to a contacts database of user.

• Cloud Kit framework – Gives a medium for moving data between your app and iCloud.

• Core data Framework – Technology for managing the data model of a Model View Controller app.

• Core Foundation framework – Interfaces that gives fundamental data management and service features for
iOS apps.

• Core Location framework – Gives location and heading information to apps.

• Core Motion Framework – Access all motion based data available on a device. Using this core motion
framework Accelerometer based information can be accessed.

• Foundation Framework – Objective C covering too many of the features found in the Core Foundation
framework

• Healthkit framework – New framework for handling health-related information of user

• Homekit framework – New framework for talking with and controlling connected devices in a user’s home.

• Social framework – Simple interface for accessing the user’s social media accounts.

• StoreKit framework – Gives support for the buying of content and services from inside your iOS apps, a
feature known asIn-App Purchase.

Page 8 of 20

Core OS Layer

The Core OS layer holds the low level features that most other
technologies are built upon.

• Core Bluetooth Framework.

• Accelerate Framework.

• External Accessory Framework.

• Security Services framework.

• Local Authentication framework.

4.What is a program level in iOS? Discuss the various program levels available for an iOS develop.

The program level is where development teams, stakeholders, and other resources are devoted to some

important, ongoing system development mission. It describes the program level teams, roles, and activities

that incrementally deliver a continuous flow of value.

If you do not have an Apple Developer account, you can create a free

account at https://developer.apple.com/. Having the Apple Developer account allows you to

create iOS applications and run them locally on your machine using the iOS Simulator. To

deploy applications you have created to a physical device (iPhone, iPad, iPod Touch) you

must belong to the iOS Developer program.

o IOS Developer Program: This program level allows developers to distribute apps in

the App Store as an individual, a sole proprietor, a company, an organization, a

government entity, or an educational institution. The cost for this program is $99 a

year, and you are allowed to name 100 devices within your iOS Developer account.

o IOS Developer Enterprise Program: This program level allows developers to

develop proprietary apps for internal distribution within your company, organization,

government entity, or educational institution. The cost for this program is $299 a

year. This level of the program will not allow you to distribute apps through the App

store, but allows ad hoc distributions (distribute directly to a device without using the

App Store) to devices in your organization. A valid Dun & Bradstreet (DUNS) number

is required, and this program level will take a little bit longer to get enrolled in. This

process takes well over a month before acceptance into the program.

o IOS Developer University Program: This program level allows higher-education

institutions to create teams of up to 200 developers that can develop iOS

applications. This program level is free, and allows for programs to be tested on

physical devices, but does not allow for ad hoc or App Store deployment.

5.With a neat diagram, explain iOS project.

The files that are actually deployed to the iOS device are known as .app files and these are just a

set of directories. Although there is an actual binary for the iOS application, you can open the .app

file and find the images, meta data, and any other resources that are included.

 Views: iPhone apps are made up of one or more views. Views usually have GUI elements

such as text fields, labels, buttons, and so on. You can build a view built using the Interface

Builder tool, which enables you to drag and drop controls on the view, or you can create a

view entirely with code.

Page 9 of 20

 Code that makes the Views work: Because iOS applications follow the MVC design

pattern, there is a clean break between the UI and code that provides the application code.

 Resources: Every iOS application contains an icon file, an info.plist file that holds

information about the application itself and the binary executable. Other resources such as

images, sounds, and video are also classified as resources.

 Project Structure in Depth: When an iOS project is created within xCode, the IDE creates

a set of files that are ready to run. These files provide the basics of what is needed to get

going with a new project.

o Main.m: As with any C program, the execution of Objective-C applications start from

the main() function, which is the main.m file.

o AppDelegate.m: The AppDelegate receives messages from the application object

during the lifetime of your application. The AppDelegate is called from the

operating system, and contains events such as the

didFinishLaunchingWithOptions, which is an event that iOS would be

interested in knowing about.

o MainStoryBoard.storyboard: This is where the user interface is created. In past

versions of xCode/iOS the user interface was stored within .xib (pronounced NIB)

files. Although this method is still supported, Storyboards are a great improvement

over .xib files for applications with complex navigation and many views.

o Supporting Files: The supporting files directory contains files such as the plist

setting files (which contain customizable application settings), as well as string

resource files that are used within your app.

 Getting to Know the xCode IDE

It is important to use the correct tool for the job, regardless of whether you are constructing a house

or constructing an application. If you are new to xCode, there will be a bit of a learning curve to

becoming proficient with the IDE, but xCode is a top-notch IDE with many features for you to

discover.

 Navigators: The left side of the xCode window is known as the navigator area. A variety of

navigators enable you to list the contents of your project, find errors, search for code, and

more. The remainder of this section introduces the Project Navigator, the Search Navigator,

and the Issue Navigator. Going from left to right, the project navigator is the first of the

xCode navigators; the icon looks like a file folder. The Project Navigator simply shows the

contents of your project or workspace, as shown in Figure 5.1. Double-clicking a file in the

Project Navigator opens the file in a new window, and single-clicking opens the file within

the xCode workspace.

Page 10 of 20

Page 11 of 20

Page 12 of 20

Storyboards: In iOS versions prior to iOS 5, developers needed to create a separate XIB

file for each view of their application. A XIB file is an XML representation of your controls

and instance variables that get compiled into the application. Managing an application that

contains more than a few views could get cumbersome. iOS 5 contained a new feature

called storyboards that enables developers to lay out their workflow using design tools built

within xCode. Apps that use navigation and tab bars to transition between views are now

much easier to manage, with a visual representation of how the app will flow. With

Storyboards, you will have a better conceptual overview of all the views in your app and the

connections between them. Figure shows an example of a storyboard for an application

containing a tab bar for navigation to three other views.

6.Describe the anatomy of a windows phone 7 App.

Here we discuss the basic design elements used in Windows Phone 7 application development,

and how you can leverage the tools you have at hand to implement them.

1. Storyboards: Storyboards are Silverlight’s control type for managing animations in code.

They are defined in a given page’s XAML and leveraged using code behind. Uses for these animations are

limited only by the transform operations you are allowed to perform on objects.

Anytime you want to provide the user with a custom transition between your pages or element updates, you

should consider creating an animation to smooth the user experience.

Because storyboards are held in XAML you can either edit them manually or use Expression Blend’s

WYSIWYG editor.

In Blend, in the Objects and Timelines Pane at the left, click the (+) icon to create a storyboard. Once you

have a storyboard, you can add key frames on your time line for each individual element you would like to

perform a transformation on. This can include moving objects and changing properties (like color or

opacity). After setting up your time line, you can start the storyboard in code. The name you created for your

storyboard will be accessible in code behind.

Page 13 of 20

2. Pivot vs Panorama: Both the Pivot and Panorama controls are used to delineate categories and subsets of

data. With the Pivot control you get strict isolation of these groupings, with the menu providing discoverable

UI to show the other categories. 2. With the

Panorama control you get transitions between the groupings with discoverable content on the window

boundaries.

The Windows Phone Emulator

The Windows Phone 7 emulator is a very powerful tool. Not just a simulator, the emulator runs a completely

sandboxed virtual machine in order to better mimic the actual device. It also comes with some customization

and runtime tools to manipulate sensors that are being emulated on the device, including GPS and

accelerometer, as well as provide a way to capture screenshots while testing and developing applications.

The debugging experience inside of Visual Studio is superior to the ones in Eclipse and the third-party

frameworks. The load time of the Emulator is quite fast. It acts responsively, and the step-through just

works.

7.Write a note on other useful windows phone Thing.

IOS applications can be used do many more tasks as explained in following sections.

 Offline Storage

Even if your application is using a web service for retrieving information, at some point you may need to

save information on the device. Depending on the size and type of data, you have a few different options.

Plist : Property lists are the simplest way to store information on the device. In the Mac world, many

applications use the plist format to store application settings, information about the application, and even

serialized objects. It’s best to keep the data contained in these files simple and small, though.

The following example finds the path to a plist stored in the supporting files directory, with a name of

example. It then loads the plist into a dictionary object, and loops through each time writing the contents of

each item in the plist to the debug console.

- (void)getValuesFromPlist

{

// build the path to your plist

Page 14 of 20

NSString *path = [[NSBundle mainBundle] pathForResource:

@”example” ofType:@”plist”];

// load the plist into a dictionary

NSDictionary *pListData = [[NSDictionary alloc]

initWithContentsOfFile:path];

// loop through each of the Items in the property list and log

for (NSString *item in pListData)

NSLog(@”Value=%@”, item);

}

Core Data: If the data that you need to persist on the device is nontrivial, meaning there is a great deal of it

or its complex, Core Data is the way to go. Core Data is described by Apple as a “schemadriven object

graph management and persistence framework.” Core Data is not an ORM (Object Relational Mapper).

Core Data is an API that abstracts the actual data store of the objects. Core

Data can be configured to store these objects as a SQLite database, a plist, custom data, or a binary file.

Core Data has a steep learning curve, but is well worth learning more about if your app will have a great

deal of data held within.

GPS

One of the great benefits to mobile devices is the GPS functionality. Once you are able to get over the

hurdles of learning the basic functions within the iOS platform, starting to work with the GPS functions can

be a great deal of fun. The GPS functions are located in the CoreLocation framework, which is not added to

a new project by default. To do this, you will need to click the

Build Phases tab on the project settings page.

Once on the Build Phases tab, expand the Link Binary with Libraries section, and click the + button.

You are then prompted with a list of frameworks to add. Select the CoreLocation.framework. Use the code

given below –

// GPS Example

locationManager = [[CLLocationManager alloc] init];

locationManager.delegate = self;

locationManager.distanceFilter = kCLDistanceFilterNone;

// get GPS DatalocationManager.desiredAccuracy =

kCLLocationAccuracyHundredMeters;

[locationManager startUpdatingLocation];

Notifications

Setting up notifications for Windows Phone 7 is a multistage process. First you must build up a

push channel to receive communications within your app. Creating that push channel provides you

with a Service URI to post data to. Posting data in specific formats determines what type of

message will be displayed to the client app. There are three types of notifications:

1. Toast notification: The first and simplest is the toast notification. With a toast notification

you can pass a title, a string of content, and a parameter.

 The title will be boldfaced then displayed

 the content will follow non-boldfaced, and

• the parameter will not be shown, but it is what is sent to your application when the

user taps on the toast message. This can contain parameters to load on the default

page, or a relative link to the page you want loaded when the app loads as a result of

the tap. Then the user taps on the toast message.

2. Tile notification: With the tile notification you can update the application tile content. The

XML data that you post contains fields for the title on

 the front of the tile,

 front of the tile background image,

 the count for the badge,

 the title for the back of the tile,

 the back of the tile background image, and

Page 15 of 20

 string of content for the back of the tile.

3. Raw Notifications: The third and most developer-centric notification type is raw. With the

raw notification type you can pass data directly to the app. It will not be delivered if the

application is not running.

Accelerometer

In addition to GPS, Windows Phone 7 devices are outfitted with an accelerometer. The emulator

provides a 3-D interface for simulating accelerometer change events. You can track the movement

of the device by capturing the ReadingChanged event on the accelerometer. However, you need

to have a delegate to call back to the UI thread if you want to display anything special based on the

event. If the application can access the UI thread, the event handler will call the

delegate function; otherwise, it will dispatch the event on the UI thread. You must also make sure

that when you are done capturing this data, you stop the accelerometer to preserve battery life.

Web Services

The Derby application is an example of leveraging data over the web to add value to your

application. If you don’t want to be the central repository for all data exposed to your users, you can

leverage web services that exist from other vendors.

8.Implement an application that creates an alert upon receiving a message.

Activity_main.xml
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_margin="10dp"
 android:orientation="vertical">
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Message"
 android:textSize="30sp" />
 <EditText
 android:id="@+id/editText"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:singleLine="true"
 android:textSize="30sp" />
 <Button
 android:id="@+id/button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_margin="30dp"
 android:layout_gravity="center"
 android:text="Notify"
 android:textSize="30sp"/>
</LinearLayout>
MainActivity.java

package com.example.lab9;
import android.app.Activity;
import android.app.Notification;
import android.app.NotificationManager;
import android.app.PendingIntent;
import android.content.Intent;
import android.os.Bundle;
import android.view.Menu;
import android.view.MenuItem;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;

Page 16 of 20

public class MainActivity extends Activity {
Button notify;
 EditText e;
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 notify= (Button) findViewById(R.id.button);
 e= (EditText) findViewById(R.id.editText);

 notify.setOnClickListener(new View.OnClickListener()
 {
 @Override
 public void onClick(View v)
 {
 Intent intent = new Intent(MainActivity.this, MainActivity.class);
 PendingIntent pending = PendingIntent.getActivity(MainActivity.this, 0, intent, 0);
 Notification noti = new Notification.Builder(MainActivity.this).setContentTitle("New
Message").setContentText(e.getText().toString()).setSmallIcon(R.drawable.ic_launcher).setContentInten
t(pending).build();
 NotificationManager manager = (NotificationManager)
getSystemService(NOTIFICATION_SERVICE);
 noti.flags |= Notification.FLAG_AUTO_CANCEL;
 manager.notify(0, noti);
 }
 });
 }
}
Manifest.xml
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.example.lab9"
 android:versionCode="1"
 android:versionName="1.0" >
 <uses-sdk
 android:minSdkVersion="16"
 android:targetSdkVersion="21" />
 <application
 android:allowBackup="true"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >
50
 <activity
 android:name=".MainActivity"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" /> </intent-filter>
 </activity>
 </application>
</manifest>
OUTPUT

Page 17 of 20

9. How to build derby app in windows phone 7? Explain

Here, you implement the features of the Derby Names project using Microsoft Visual Studio, while also

taking time to learn Windows Phone 7–specific technologies.

Creating the Project:

Open Visual Studio and create a new Windows Phone project. For this application, choose Panorama

because it offers a UI in which you can share your data.

In a Panorama application the application is created with the default Panorama background.

Visual Studio will create SampleData and ViewModels for your application. Ultimately, you will be able to

remove these from your application when you implement your service communications. App.xaml is the

entry point for your application and MainPage.xaml is the page that loads by default.

Page 18 of 20

User Interface:

The default Panorama application defines its DataContext in XAML. The DataContext has first item’s

binding associated by default. The Panorama control can be likened to any collection-based UI element

(UITableView in iOS or the ListView in Android), and the PanoramaItems are the respective rows in that

collection element. When you feel familiar enough to start working with the data you will need to create a

service reference to the Odata feed.

To reference an OData feed you need only to right-click your project, choose Add Service

Reference, enter in the URL of your service, and click Go. After it has found the service it should enumerate

the models. You are then allowed to update the namespace and create this reference. Once you create the

service you can start working with the Panorama control to bind the data available from these entities. After

you have made this service, be sure to reference this entity context when your page needs to make calls to

the service:

readonly DerbyNamesEntities context = new DerbyNamesEntities(new

Uri(“http://localhost:1132/DerbyNames.svc/”));

Derby Names:

To bind data to your Panorama item you need to set the ItemsSource and TextBlock bindings. Each

individual entry in the DerbyNames entity in OData contains properties for Name and League, which you

will bind to the TextBlocks in your Panorama item.

Leagues: Each derby team belongs to a league. The entity for League is similar to the

DerbyNames entity, and will make it easy to bind from.

10.Create an application to compute the tax of an employee.

Activity_main.xml
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"

Page 19 of 20

 android:layout_height="match_parent"
 android:layout_margin="20dp">

<TextView
 android:id="@+id/textView"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginTop="50dp"
 android:text="Answer is"
 android:textSize="30sp"
 android:gravity="center"/>

 <EditText
 android:id="@+id/editText1"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:inputType="numberDecimal"
 android:textSize="20sp" />

<Button
 android:id="@+id/Calc"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="*"
 android:textSize="30sp"/>
<TextView
 android:id="@+id/Result"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginTop="50dp"
 android:text="Answer is"
 android:textSize="30sp"
 android:gravity="center"/>

 </LinearLayout>

MainActivity.java
package com.example.lab3;
import android.app.Activity;
import android.os.Bundle;
import android.text.TextUtils;
import android.view.Menu;
import android.view.MenuItem;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;

import android.widget.TextView;
import android.view.View.OnClickListener;
public class MainActivity extends Activity implements OnClickListener {
 TextView Amount;
EditText Num1;
 Button Calc;
Flaot Tax;
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

Page 20 of 20

 //Referring the Views
 Amt= (EditText) findViewById(R.id.editText1);
 calc = (Button) findViewById(R.id.Calc);

 Result = (TextView) findViewById(R.id.Result);

 // set a listener
 calc.setOnClickListener(this);

 }

 public void onClick(View v)
 {

 // read EditText and fill variables with numbers
Float Amt1 = Float.parseFloat(Amt.getText().toString());
 If(Amt1>1500000)
 Tax=Amt1*(30/100);

Else if(Amt1>1000000)

 Tax=Amt1*(25/100);

Else if(Amt1>7500000)

 Tax=Amt1*(15/100);

Else

 Tax=0;
 // form the output line
 Result.setText("Tax to be paid " + Tax);
 }
}
Manifest.xml
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.example.lab3"
 android:versionCode="1"
 android:versionName="1.0" >
 <uses-sdk
 android:minSdkVersion="16"
 android:targetSdkVersion="21" />
 <application
 android:allowBackup="true"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >
 <activity
 android:name=".MainActivity"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" /> </intent-filter>
 </activity>
 </application>
</manifest>

