
Page 1 of 26

CMR

INSTITUTE OF

TECHNOLOGY

USN

Internal Assessment Test 3 Answer Key– June. 2022

Sub: ADVANCES IN WEB TECHNOLOGIES
Sub

Code:
20MCA41 Branch: MCA

Date: 18/06/2022 Duration: 90 min’s
Max

Marks:
50 Sem IV

Note : Answer FIVE FULL Questions, choosing ONE full question from each Module

 PART I MARKS

OBE

CO

RBT

1 Write a program to implement a stack like structure in an Array using classes in Ruby.

OR

[10]

CO3 L4

2

Explain String Methods in Ruby.

[10]
CO3 L2

3
PART II

a) Explain Creation and Accessing of Arrays in Ruby.
b) Write any five built-in methods for Arrays in Ruby with examples.

OR

[10]

CO3 L2

4

Explain directory structure of rails application using “Hello world” in Rails

[10]
CO4 L3

5
PART III

Explain rails application to connect with Database

OR

[10]

CO4 L4

6 a) Explain Overview of Rails with MVC Architecture.

b)Compare Controller, Views, Helpers, and Models in Ruby on Rails

[10]

CO3 L2

7
PART IV

Explain AJAX Patterns with suitable Examples

OR

[10]

CO2 L2

8

Explain with example for Handling multiple XMLHttpRequest objects in the same page.

[10]

CO2 L4

9
PART V

a) Explain any two Lists in BOOTSTRAP with examples.

b) Explain different ways to display code with Bootstrap

OR

[10] CO5 L2

10 a)Explain Table elements supported by BOOTSTRAP with Example.

b)Describe Optional Table classes in BOOTSTRAP with Example

[10] CO5 L2

Page 2 of 26

1) Write a program to implement a stack like structure in an Array using classes in Ruby.

Page 3 of 26

2) Explain String Methods in Ruby.

Page 4 of 26

Page 5 of 26

Page 6 of 26

3a) Explain Creation and Accessing of Arrays in Ruby.

b) Write any five built-in methods for Arrays in Ruby with examples.

Page 7 of 26

Page 8 of 26

Page 9 of 26

4) Explain directory structure of rails application using “Hello world” in Rails

Page 10 of 26

Page 11 of 26

Page 12 of 26

5) Explain rails application to connect with Database.

Step 1: Download “railsinstaller ” Which is “railsinstaller-2.2.4 ” and double click to install. Before

install ensure that internet connection must be available

Step 2: Shortcut “Git bash” is visible on desktop or All programs
Step 3 : Click on “Git bash” The CMD prompt points to $ with “/c/sites ” directory

Step 4: create new bookstore using the following syntax

$ rails new bookstore

Step 5: Change the directory the following syntax

$ cd bookstore

Step 6: Run the server using following command

$ rails server
Then open Firefox Web browser and type http://localhost:3000Which gives ruby on rails welcome

page.

Step 7:Scaffold command helps to represent different data types in book table

rails generate scaffold book acc_num:integer title:string author:string edition:string

publisher:string

Step 8: Use rake command to flush “book” table and its contents to sqlite database

$ rake db:migrate

Step 9: Use rake command to flush function paths to routes.rb

$ rake routes

Step 10: Run the server again

$ rails server

Then open Firefox Web browser and type http://localhost:3000/books

Add some books to the database by selecting newbook.

6) a) Explain Overview of Rails with MVC Architecture.

Ruby on rails is an open source web framework written in the Ruby

programming language, and all the applications in Rails are written in Ruby. It

is very popular framework for web development due to its amazing features.

http://localhost:3000/
http://localhost:3000/books

Page 13 of 26

This framework has built-in solutions to many common problems that

developer face during web development.

mvc architecture

Ruby on Rails uses the Model-View-Controller (MVC) architectural pattern.

MVC is a pattern for the architecture of a software application. It separates an

application into the following components:

 Models for handling data and business logic

 Controllers for handling the user interface and application

 Views for handling graphical user interface objects and presentation

This separation results in user requests being processed as follows:

1. The browser sends a request for a page to the controller on the server

2. The controller retrieves the data it needs from the model in order to

respond to the request

3. The controller gives the retrieved data to the view

4. The view is rendered and sent back to the client for the browser to display

Page 14 of 26

As you can see, each component of the model-view-controller architecture has

its place within the app directory—the models, views, and controllers sub

directories respectively.

MODELS

ActiveRecord is the module for handling business logic and database

communication. It plays the role of model in our MVC architecture.

Lets consider this example where a user can create articles and each article can

have many comments. The image on the left shows the all the validations and

associations of article model with other models, where as the image on the

write shows the schema of articles.

Page 15 of 26

ActiveRecord is designed to handle all of an application's tasks that relate to the

database, including:

Page 16 of 26

 establishing a connection to the database server

 retrieving data from a table

 storing new data in the database.

CONTROLLERS

The ActionController is a module which handles the application logic of your

program, acting as glue between the application’s data, the presentation layer,

and the web browser.

The following images are example of how controllers are created for a model.

Here I have created controllers for articles model.

Page 17 of 26

In this role, a controller performs a number of tasks including:

 deciding how to handle a particular request.

 retrieving data from the model to be passed to the view

 gathering information from a browser request and using it to create or

update data in the model.

VIEWS

The principle of MVC is that a view should contain presentation logic only. This

principle holds that the code in a view should only perform actions that relate

to displaying pages in the application; none of the code in a view should

perform any complicated application logic, nor store or retrieve any data from

Page 18 of 26

the database. In Rails, everything that is sent to the web browser is handled by

a view.

A view need not actually contain any Ruby code at all — it may be the case that

one of your views is a simple HTML file; however, it’s more likely that your

views will contain a combination of HTML and Ruby code, making the page

more dynamic. The Ruby code is embedded in HTML using embedded Ruby

syntax.

This views generates a list of all the articles created by user.

6b) Compare Controller, Views, Helpers, and Models in Ruby on Rails

Models:

Where the actual data lives. This is the direct link to the database, and is where data should be manipulated

and altered.

For the most part, when you are dealing with code that relates to your data (such as saving, updating, or

manipulating an object entry), place it in the model. These methods can easily be called upon and re-used in

a DRY fashion from the controller or view.

Views:

What the end user sees when they interact with the app. This should have HTML and CSS specific code,

along with some Ruby passed in through ERB tags.

Page 19 of 26

A view should contain as little to no processing or calculating. This should be done through the model or

controller, though at times that may not be fitting, and should be added to a Helper model.

Controllers:

What manages the communication between the View and the Model. The controller takes the data from the

Model and prepares it for implementation within the view.

The controller should handle all of the prep work for handling what in the view the user will need to see.

This can include setting instance variables of models, calling model methods to manipulate specific data,

deciding if a user is logged in, and what to allow or not to allow within the view. The controller will take

requests, and apply logic within the requests method to prepare the method data for the upcoming view.

They should be skinny, and you should keep as much data manipulating functionality to the model as

possible.

Helpers:

Helper methods don't manipulate data like methods within a model, but instead are a great way to extract

common presentation logic from multiple views. Helpers are methods that are available to your views and

encapsulate a common bit of code. They can be seen within a Controller, but are commonly housed within

the

/app/helpers

folder. Because Helper methods are generally organized by controller (remember they help with refactoring

heavily repeated bits of code), they would typically be housed under the file name:

object_helper.rb

If you need to build a function that will make creating the view easier, or more DRY, that is a great place to

use a Helper. For example, if you are iterating over a list of objects frequently to display a particular piece of

information, or see something within your views that is heavily repeated, those can go into a Helper. Helpers

can be a great way to keep your views DRY, easier to update, and less bug prone.

7) Explain AJAX Patterns with suitable Examples

Submission Throttling

 Submission throttling solves the issue of when to send user data to the server.
 In a traditional web site or web application, each click makes a request back to the server

so that the server is always aware of what the client is doing.
 In the Ajax model, the user interacts with the site or application without additional requests

being generated for each click.
 In a traditional web solution data send back to the server every time when user action

occurs. Thus, when the user types a letter, that letter is sent to the server immediately. The
process is then repeated for each letter typed.

 The problem with this approach is that it has the possibility to create a large number of
requests in a short amount of time, which may not only cause problems for the server but
may cause the user interface to slow down as each request is being made and processed.

 The Submission Throttling design pattern is an alternative approach to solve this
problematic issue.

Page 20 of 26

 Using Submission Throttling, you buffer the data to be sent to the server on the client and
then send the data at predetermined times.

o Submission Throttling typically begins either when the web site or application first
loads or because of a specific user action.

o Then, a client-side function is called to begin the buffering of data.
o Every so often, the user's status is checked to see if user is idle or not. If the user is

still active, data continues to be collected.
o When the user is idle, means not performing any action, it's time to decide whether

to send the data. This determination varies such as, data is send only when it
reaches a certain size, or data is sending every time when the user is idle.

o After the data is sent, the application typically continues to gather data until either a
server response or some user action signals to stop the data collection.

 Example: Google Suggest feature does this brilliantly. It doesn't send a request after each

character is typed. Instead, it waits for a certain amount of time and sends all the text
currently in the text box. The delay from typing to sending has been fine-tuned to the point
that it doesn't seem like much of a delay at all. Submission Throttling, in part, gives Google
Suggest its speed.

Predictive Fetch

 The Predictive Fetch pattern is a relatively simple idea that can be somewhat difficult to
implement: the Ajax application guesses what the user is going to do next and retrieves the
appropriate data.

 In a perfect world, it would be wonderful to always know what the user is going to do and
make sure that the next data is readily available when needed. In reality, however,
determining future user action is just a guessing game depending on user’s intentions.

 Suppose user is reading an online article that is separated into three pages. It is logical to
assume that if user is interested in reading the first page, then user also interested in
reading the second and third page.

 So if the first page has been loaded for a few seconds (which can easily be determined by
using a timeout), it is probably safe to download the second page in the background.
Likewise, if the second page has been loaded for a few seconds, it is logical to assume that
the reader will continue on to the third page.

 As this extra data is being loaded and cached on the client, the reader continues to read
and barely even notices that the next page comes up almost instantaneously after clicking
the Next Page link.

 Example: This approach is taken by many web-based e-mail systems,

including Gmail and AOL Webmail; During the writing of an e-mail, its general e-mail is for
someone whom user knows, so it's logical to assume that the person is already in user's
address book. To help out user, it may be wise to pre-load user's address book in the
background and offer suggestions.

Fallback Patterns

 We pre-suppose that everything goes according to plan on the server-side: the request is
received, the necessary changes are made, and the appropriate response is sent to the
client. But what happens if there's an error on the server? Or worse yet, what if the request
never makes it to the server?

 When developing Ajax applications, it is imperative that you plan ahead for these problems

and describe how your application should work if one of these should occur.

Cancel Pending Requests

Page 21 of 26

 If an error occurs on the server, meaning a status of something other than 200 is returned,
you need to decide what to do. Chances are that if a file is not found (404) or an internal
server error occurred (302), trying again in a few minutes isn't going to help since both of
these require an administrator to fix the problem.

 The simplest way to deal with this situation is to simply cancel all pending requests. You
can set a flag somewhere in your code that says, "don't send any more requests."

 This solution has maximum impact on the Periodic Refresh Pattern.

Try Again

 Another option when dealing with errors is to silently keep trying for either a specified
amount of time or a particular number of tries.

 Once again, unless the Ajax functionality is key to the user's experience, there is no need to
notify user about the failure. It is best to handle the problems behind the scenes until it can
be resolved.

 In general, the Try Again pattern should be used only when the request is intended to occur
only once, as in a Multi-Stage Download.

8) Explain with example for handling multiple XMLHttpRequest objects in the same page.

<html>

 <head>

 <title>Sending Data to the Server</title>

 <script language = "javascript">

 var XMLHttpRequestObject1 = false;

 if (window.XMLHttpRequest) {

 XMLHttpRequestObject1 = new XMLHttpRequest();

 } else if (window.ActiveXObject) {

 XMLHttpRequestObject1 = new

 ActiveXObject("Microsoft.XMLHTTP");

 }

 function getData1(dataSource, divID)

 {

 if(XMLHttpRequestObject1) {

 var obj = document.getElementById(divID);

 XMLHttpRequestObject1.open("GET", dataSource);

 XMLHttpRequestObject1.onreadystatechange = function()

 {

 if (XMLHttpRequestObject1.readyState == 4 &&

 XMLHttpRequestObject1.status == 200) {

 obj.innerHTML = XMLHttpRequestObject1.responseText;

 }

 }

 XMLHttpRequestObject1.send(null);

 }

 }

 var XMLHttpRequestObject2 = false;

 if (window.XMLHttpRequest) {

 XMLHttpRequestObject2 = new XMLHttpRequest();

Page 22 of 26

 } else if (window.ActiveXObject) {

 XMLHttpRequestObject2 = new

 ActiveXObject("Microsoft.XMLHTTP");

 }

 function getData2(dataSource, divID)

 {

 if(XMLHttpRequestObject2) {

 var obj = document.getElementById(divID);

 XMLHttpRequestObject2.open("GET", dataSource);

 XMLHttpRequestObject2.onreadystatechange = function()

 {

 if (XMLHttpRequestObject2.readyState == 4 &&

 XMLHttpRequestObject2.status == 200) {

 obj.innerHTML = XMLHttpRequestObject2.responseText;

 }

 }

 XMLHttpRequestObject2.send(null);

 }

 }

 </script>

 </head>

 <body>

 <h1>Sending Data to the Server</h1>

 <form>

 <input type = "button" value = "Fetch message 1"

 onclick = "getData1('dataresponder1.php?data=1', 'targetDiv')">

 <input type = "button" value = "Fetch message 2"

 onclick = "getData2('dataresponder1.php?data=2', 'targetDiv')">

 </form>

 <div id="targetDiv">

 <p>The fetched message will appear here.</p>

 </div>

 </body>

</html>

9) a) Explain any two Lists in BOOTSTRAP with examples.

b) Explain different ways to display code with Bootstrap

Page 23 of 26

Page 24 of 26

9 b)

10) a)Explain Table elements supported by BOOTSTRAP with Example.

b)Describe Optional Table classes in BOOTSTRAP with Example

Page 25 of 26

Page 26 of 26

	1) Write a program to implement a stack like structure in an Array using classes in Ruby.
	MODELS
	CONTROLLERS
	VIEWS
	Models:
	Views:
	Controllers:
	Helpers:
	Submission Throttling
	Predictive Fetch
	Fallback Patterns

