CMR NEARS o

INSTITUTE OF SO
TECHNOLOGY USN § CMRIT
Internal Assessment Test 3 Answer Key— June. 2022
Sub: | ADVANCES IN WEB TECHNOLOGIES CoSduet? 20MCA41 Branch: | MCA
Date: | 18/06/2022 |Duration: | 90 min’ Max 5o | sem IV
' ' s Marks:

Note : Answer FIVE FULL Questions, choosing ONE full guestion from each Module

OBE
PART I MARKS
Co RBT
1 \Write a program to implement a stack like structure in an Array using classes in Ruby. [10]
COo3| L4
OR
2 [10]
Explain String Methods in Ruby. cos| L2
PART Il [10]
3 a) Explain Creation and Accessing of Arrays in Ruby.
b) Write any five built-in methods for Arrays in Ruby with examples. Co3 L2
OR
4 Explain directory structure of rails application using “Hello world” in Rails [10] cosl L3
PART I
5 Explain rails application to connect with Database cosl La
OR
[10]
6 a) Explain Overview of Rails with MVC Architecture.
b)Compare Controller, Views, Helpers, and Models in Ruby on Rails CO3 L2
[10]
PART IV COo2 L2
7 Explain AJAX Patterns with suitable Examples [10]
OR
Explain with example for Handling multiple XMLHttpRequest objects in the same page. Co2| L4
8 [10]
PART V
9 a) Explain any two Lists in BOOTSTRAP with examples.
b) Explain different ways to display code with Bootstrap [10] |CO5| L2
OR
10 a)Explain Table elements supported by BOOTSTRAP with Example. [10] CO5| L2
b)Describe Optional Table classes in BOOTSTRAP with Example

Page 1 of 26

1) Write a program to implement a stack like structure in an Array using classes in Ruby.

class Stack“z_class

def initialize(len = 100)
@stack_ref = Array.new(len)
@max_len = len
@top_index = -1

end

I push method
def push(number)
if @top_index == @max_len
puts "Error in push - stack is full*"
else
@top_index += 1
@stack_ref[@top_index] = number
end
end

def pop()
if @top_index == -1
puts "Error in pop - stack is empty"
else
€top _index -= 1
end
end

aend

mystack = Stack2 class.new(50)

mystack.push(42)

mystack.push(29)

puts "Top element 1s (should be 29): #{mystack.top}"

puts "Second from the top 1s (should be 42): #{mystack.top2}"
mystack.pop

mystack.pop

mystack.pop # Produces an error message - empty stack

Page 2 of 26

2) Explain String Methods in Ruby.

String Methods

* Catenation

>> "Happy" + " " 4 "HOlidaYS!"
=> "Happy Holidays!"
* Append
>> mystr = "G'day "
=> "G'day "

>> mystr << "mate"
=> "G'day mate"
mystr += “mate”

>> mystr = "Wow!" >> mystr = "Wow!"
- " I n

=> "Wow!" Z WOW.t -
> ourscr = mys

>> yourstr = mystr A - Y

— " ' " => WOW!

=> "Wow! >> mystr = "What?"

>> yourstr => "What?"

=> "Wow!" >> yourstr

=> "Wow!"

Page 3 of 26

>> mystr = "Wow!"

=> "Wow!"

>> yourstr = mystr

=> "Wow!"

>> mystr.replace("Golly!")
=> "Golly!"

>> mystr

=> "Golly!"

>> yourstr

=> "Golly!l"

Method Action
capitalize Convert the first letter to uppercase and the rest of the letters
to lowercase

chop Removes the last character

chomp Removes a newline from the right end, if there is one
upcase Converts all of the lowercase letters in the object to uppercase
downcase Converts all of the uppercase letters in the object to lowercase
strip Removes the spaces on both ends

lstrip Removes the spaces on the left end

rstrip Removes the spaces on the right end

reverse Reverses the characters of the string

swapcase Convert all uppercase letters to lowercase and all lowercase

letters to uppercase

Page 4 of 26

* Bang or mutator methods

>> str = "Frank"

=> "Frank"

>> str.upcase

=> "FRANK"

>> str

=> "Frank"

>> str.upcase!

=> "FRANK"

>> str

=> "FRANK"
iy > str = sseller 2
str[3] => "Shelley" s
108 >> str(2,4] e
?23[3].chr => "elle" >>

e

str = "Donald"
"Donald"
str[3,3] = "nie"
"nie"

str

"Donnie"

5 T) [y]
0 1 2 3 4 5 6

Page 5 of 26

=>

>>
=>

-t N =

equal?
eql?
<=
>>
"snowstorm" == "snowstorm" W
true >>
"snowie" == "gnowy" i
false >>
=>
7 == 7.0
true
7.eql?(7.0)
false
"snowstorm".equal?("snowstorm")
false

3a) Explain Creation and Accessing of Arrays in Ruby.
b) Write any five built-in methods for Arrays in Ruby with examples.

Page 6 of 26

"apple" <=> "prune"
-1

"grape" <=> "grape"
0

"grape" <=> "apple"
1

>> "More! " * 3
1

=> "More! More! More! "

Create and access array

>> listl = Array.new(5)

=> [nil, nil, nil, nil, nil}

>> list2 = [2, 4, 3.14159, "Fred", [1]
=> [2, 4, 3.14159, "Fred", []]

>> list = [2, 4, 6, 8]
=> [2, 4, 6, 8]

>> gsecond = list[1]

=> 4

>> list[3] = 9

=> 9

>> list

=> (2, 4, 6, 9]

>> 1ist[2.999999)

=> 6

>> list.length
=> 4

Page 7 of 26

Built-in methods

* Shift, unshift and pop, push
list=[2, 4, 17, 3]

list.shift list.pop
o/p [4,17,3] o/p [2,4,17]

list.unshift(8) list.push(8,5)
o/p [8,4,17,3] o/p [2,4,17,8,5]

Page 8 of 26

Concat

>> listl = [1, 3, 5, 7]

= (1, 3, 5, 7}

>> list2 = [2, 4, 6, 8)

=> [2, 4, 6, 8]

>> listl.concat(list2)

=> 1, 3; 5; 7+ 2; 4, 6, 8]

>> listl = (0.1, 2.4, 5.6, 7.9]

=> [D.1, 2.4, 5.6, 7.9]

>> 1ist2 = [3.4, 2.1, 7.5)

> 1345 21y 7:5)

>> list3 = listl + list2

m> [0:1; 2:4; 5:.6; 7:9; 3:4, 2:1; 7:8)

>> getl = [2, 4, 6, 8)
=> [2, 4, 6, 8]

>> gset2 = [4, 6, 8, 10)
=> [4, 6, 8, 10])

>> setl & set2

=> [4, 6, 8]
>> setl - set2
=> [2]

>> setl | set 2
=> [2, 4, 6, 8, 10])

4) Explain directory structure of rails application using “Hello world” in Rails

Page 9 of 26

15.2.1 Static Documents—Hello World in Rails

This section describes how to build a Tello World application in Rails. The
purpose of such an exercise is 10 demonstrate the structure of the simplest possi-
ble Rails zpplication, showing what files must be created and where they mus
reside in the directory structure. InstantRails itself runs in the following
directory: :
C:\myrails\InstantRails-1.7-win\InstantRails

where the first directory’s name, myrails in this cxample, is chosen by the per-
son who installed TnstantRails. In this directory there is an application file

named InstantRails. Running this application opens a small window, as shown in
Figure 15.1.

w [nstant Rafls

[e] s

192024335 nlant Rl Servere caite;

Figure 15.1 The InstantRails application window

A click on the black “I” on the left border of this window produces a small
menu. Click the Rails Application entry in this menu, which opens
another menu. Clicking on the Open Ruby Console Window entry in this
menu opens a DOS command window in the following directory:

C:\myrails\InstantRails-1.7-win\InstantRails\rail s_aps

It is at this command linc that Rails commands can be given. They cannot be
given in a normal DOS command window.

To this base directory, users usnally add a new subdirectory for all their
Rails applications. We named ours exercises. In the new exercises direc-
tory, the new application railsl is created with the following command:

>rails railsl

>ruby script/generate controller say

With this command we have chosen the name say for the contreller for our
application.The response produced by the execution of this command follows:

exists app/controllers/

exists app/helpers/

create app/views/say

exists test/functional/

create app/controllers/say controller.rb
create test/functional/say contrcller test.rb
create app/helpers/say helper.rb

The exists lines above indicate files and directories that are verified to already
exist. The create lines show the newly created directories and files. ‘T'here are
now two Ruby classes in the conwollers directory, application.rb and
say_controller.rb, where the say_controller.rb class is a subclass of
application.rb, which provides the default behavior defined in the parent
class. The say_controller.rb is the specific controller for the railsl
application. Following is a listing of say_controller.rb:

class SayController < ApplicationController
end

Page 10 of 26

exercises

railsl
v
2pp
controllers views models helpers
application ARYRULE s?y
say controller
(class SayController) *

hello.rhtml

Flgure 15.2 Directory structure for the railsl application

SayController is an empty class, other than what it inherits from
application.rb. The coniroller produces, at least indirectly, the response 1o
requests, 50 a method must be added to it. "I'he method does not need to actu-
ally do anything, other than indicate a document that will be the response. The
mere existence of the method specifics by its name the response document, So,
the action will be nothing more than an empty method definition, whose name
will be the same as that of the response document in the say subdircerory of
views. With the empty method, which is called an action method, the controller
now has the following appearance:

class SayController < ApplicationController
def hello
end

end

<!DOCTYPE html PUBLIC "-//w3c//DTD XHTML 1.1//EN"
"http://www.w3.0org/TR/xhtmll1/DID/xhtml11.ded">

<!== hello.rhtml - the template for Hello World
-
<html xmlns = "htip://www.w3.orqg/1999/xhtml">
<head>
<title> Hello, Rails! </title>
</head>
<body>
<h1> Hello from Rails! </hl>
</body>
</html>

Page 11 of 26

The extension on this file is . rhtml for the same reason XH T ML documents

code, which is interpreted by a Ruby interpreter named ERb, for Embedded
Ruby, betore the template is returned to the requesting browser.

The template file for our application resides in the say subdirectory of the
views subdirectory of the app subdirectory of the railsl directory.

Before the application can be tested, a Rails Web server must be started. A
server is started with the server script from the script directory. Within
Rails there are three different servers available. 'I'he default server is Mongrel.
but Apache and WEBrick are also available in Rails. Because it is the defanlt
Rails server, Mongrel can be started with the following command at the appli-
cauon prompt:
>ruby script/server
The default port is 3000. If a different port must be vsed, because 3000 is
already being used by some other program on the system, the port number is
given as a parameter ro the server script. Assuming 3000 is the port to be
used, the complete URL of our application is as follows:
http://localhost/say/hello
If port 3005 is used instead of 3000, the URI. would be as follows:

http://localhost:3005/say/hello

5) Explain rails application to connect with Database.

Step 1: Download “railsinstaller ” Which is “railsinstaller-2.2.4 ” and double click to install. Before
install ensure that internet connection must be available

Step 2: Shortcut “Git bash” is visible on desktop or All programs

Step 3 : Click on “Git bash” The CMD prompt pointsto $ with “/c/sites > directory
Step 4: create new bookstore using the following syntax

$ rails new bookstore

Step 5: Change the directory the following syntax

$ cd bookstore

Step 6: Run the server using following command

$ rails server

Then open Firefox Web browser and type http://localhost:3000Which gives ruby on rails welcome
page.

Step 7:Scaffold command helps to represent different data types in book table

rails generate scaffold book acc_num:integer title:string author:string edition:string
publisher:string

Step 8: Use rake command to flush “book™ table and its contents to sqlite database

$ rake db:migrate

Step 9: Use rake command to flush function paths to routes.rb

$ rake routes

Step 10: Run the server again

$ rails server

Then open Firefox Web browser and type http://localhost:3000/books

Add some books to the database by selecting newbook.

6) a) Explain Overview of Rails with MVC Architecture.

Ruby on rails is an open source web framework written in the Ruby
programming language, and all the applications in Rails are written in Ruby. It

is very popular framework for web development due to its amazing features.

Page 12 of 26

http://localhost:3000/
http://localhost:3000/books

This framework has built-in solutions to many common problems that

developer face during web development.

‘
\ {
—COTtrOlEC ‘

Browser o= = ‘
Maodel

<€ el
| | - |

mvc architecture

Ruby on Rails uses the Model-View-Controller (MVC) architectural pattern.
MVC is a pattern for the architecture of a software application. It separates an
application into the following components:

« Models for handling data and business logic

« Controllers for handling the user interface and application

. Views for handling graphical user interface objects and presentation

This separation results in user requests being processed as follows:

1. The browser sends a request for a page to the controller on the server

2. The controller retrieves the data it needs from the model in order to
respond to the request

3. The controller gives the retrieved data to the view

4. The view is rendered and sent back to the client for the browser to display

Page 13 of 26

channels
controllers
helpers

javascript

jobs

mailers
models

VIEWS

As you can see, each component of the model-view-controller architecture has
its place within the app directory—the models, views, and controllers sub

directories respectively.

MODELS

ActiveRecord is the module for handling business logic and database

communication. It plays the role of model in our MVC architecture.

Lets consider this example where a user can create articles and each article can
have many comments. The image on the left shows the all the validations and
associations of article model with other models, where as the image on the

write shows the schema of articles.

Page 14 of 26

article.rb

models >

app

class Article < ApplicationRecord
belongs to :user

has many :comments, dependent: :destroy
validates :text, presence:

before validation :normalize name, on: :create

db > schema.rb

ActiveRecord::Schema.define({version: 2020 67 23 175814) do

create table "articles", force: :cascade do |t}
t.string "title

t.text "text"

t.datetime “"created at", precision: 6, null:
t.datetime "updated at", precision: 6, null:

t.integer "use

t.index ["user id"], nmame: "index articles on user id'

ActiveRecord is designed to handle all of an application's tasks that relate to the

database, including;:

Page 15 of 26

. establishing a connection to the database server
. retrieving data from a table

. storing new data in the database.

CONTROLLERS

The ActionController is a module which handles the application logic of your
program, acting as glue between the application’s data, the presentation layer,

and the web browser.

The following images are example of how controllers are created for a model.

Here I have created controllers for articles model.

5 Artic AWl

before action :authenticate user!, except: [:index]

< ApplicationController

def index
@articles = Article.all

end

def show
@article = Article.find(params|[:id])

end

def new
@article

end

def edit
@article = Article.find(params|[:id])

end

def create
@article = Article. (article_params)
@article.user = current user
if @article.save
redirect to @article

Page 16 of 26

def update
@article = Article.find(params[:id])

if @article.update(article params)
redirect to @article
render 'edit

end

end

def destroy
@article = Article.find(params|[:id])
@article.destroy

redirect to articles path

end

def article params
params.require(:article).permit(:title, :text)

end

end

In this role, a controller performs a number of tasks including:

« deciding how to handle a particular request.
. retrieving data from the model to be passed to the view

. gathering information from a browser request and using it to create or
update data in the model.

VIEWS

The principle of MVC is that a view should contain presentation logic only. This
principle holds that the code in a view should only perform actions that relate
to displaying pages in the application; none of the code in a view should

perform any complicated application logic, nor store or retrieve any data from

Page 17 of 26

the database. In Rails, everything that is sent to the web browser is handled by

a view.

A view need not actually contain any Ruby code at all — it may be the case that
one of your views is a simple HTML file; however, it’s more likely that your
views will contain a combination of HTML and Ruby code, making the page

more dynamic. The Ruby code is embedded in HTML using embedded Ruby

<%= link to 'New Article', new article path %>

This views generates a list of all the articles created by user.

6b) Compare Controller, Views, Helpers, and Models in Ruby on Rails
Models:

Where the actual data lives. This is the direct link to the database, and is where data should be manipulated
and altered.

For the most part, when you are dealing with code that relates to your data (such as saving, updating, or
manipulating an object entry), place it in the model. These methods can easily be called upon and re-used in
a DRY fashion from the controller or view.

Views:

What the end user sees when they interact with the app. This should have HTML and CSS specific code,
along with some Ruby passed in through ERB tags.

Page 18 of 26

A view should contain as little to no processing or calculating. This should be done through the model or
controller, though at times that may not be fitting, and should be added to a Helper model.

Controllers:

What manages the communication between the View and the Model. The controller takes the data from the
Model and prepares it for implementation within the view.

The controller should handle all of the prep work for handling what in the view the user will need to see.
This can include setting instance variables of models, calling model methods to manipulate specific data,
deciding if a user is logged in, and what to allow or not to allow within the view. The controller will take
requests, and apply logic within the requests method to prepare the method data for the upcoming view.
They should be skinny, and you should keep as much data manipulating functionality to the model as
possible.

Helpers:

Helper methods don't manipulate data like methods within a model, but instead are a great way to extract
common presentation logic from multiple views. Helpers are methods that are available to your views and
encapsulate a common bit of code. They can be seen within a Controller, but are commonly housed within
the

lapp/helpers

folder. Because Helper methods are generally organized by controller (remember they help with refactoring
heavily repeated bits of code), they would typically be housed under the file name:

object_helper.rb

If you need to build a function that will make creating the view easier, or more DRY, that is a great place to
use a Helper. For example, if you are iterating over a list of objects frequently to display a particular piece of
information, or see something within your views that is heavily repeated, those can go into a Helper. Helpers
can be a great way to keep your views DRY, easier to update, and less bug prone.

7) Explain AJAX Patterns with suitable Examples

Submission Throttling

e Submission throttling solves the issue of when to send user data to the server.

o In a traditional web site or web application, each click makes a request back to the server
so that the server is always aware of what the client is doing.

e In the Ajax model, the user interacts with the site or application without additional requests
being generated for each click.

e In a traditional web solution data send back to the server every time when user action
occurs. Thus, when the user types a letter, that letter is sent to the server immediately. The
process is then repeated for each letter typed.

e The problem with this approach is that it has the possibility to create a large number of
requests in a short amount of time, which may not only cause problems for the server but
may cause the user interface to slow down as each request is being made and processed.

e The Submission Throttling design pattern is an alternative approach to solve this
problematic issue.

Page 19 of 26

e Using Submission Throttling, you buffer the data to be sent to the server on the client and
then send the data at predetermined times.

o Submission Throttling typically begins either when the web site or application first
loads or because of a specific user action.

Then, a client-side function is called to begin the buffering of data.
Every so often, the user's status is checked to see if user is idle or not. If the user is
still active, data continues to be collected.

o When the user is idle, means not performing any action, it's time to decide whether
to send the data. This determination varies such as, data is send only when it
reaches a certain size, or data is sending every time when the user is idle.

o After the data is sent, the application typically continues to gather data until either a
server response or some user action signals to stop the data collection.

« Example: Google Suggest feature does this brilliantly. It doesn't send a request after each
character is typed. Instead, it waits for a certain amount of time and sends all the text
currently in the text box. The delay from typing to sending has been fine-tuned to the point
that it doesn't seem like much of a delay at all. Submission Throttling, in part, gives Google
Suggest its speed.

Predictive Fetch

e The Predictive Fetch pattern is a relatively simple idea that can be somewhat difficult to
implement: the Ajax application guesses what the user is going to do next and retrieves the
appropriate data.

e In a perfect world, it would be wonderful to always know what the user is going to do and
make sure that the next data is readily available when needed. In reality, however,
determining future user action is just a guessing game depending on user’s intentions.

e Suppose user is reading an online article that is separated into three pages. It is logical to
assume that if user is interested in reading the first page, then user also interested in
reading the second and third page.

e So if the first page has been loaded for a few seconds (which can easily be determined by
using a timeout), it is probably safe to download the second page in the background.
Likewise, if the second page has been loaded for a few seconds, it is logical to assume that
the reader will continue on to the third page.

e As this extra data is being loaded and cached on the client, the reader continues to read
and barely even notices that the next page comes up almost instantaneously after clicking
the Next Page link.

« Example: This approach is taken by many web-based e-mail systems,
including Gmail and AOL Webmail; During the writing of an e-mail, its general e-mail is for
someone whom user knows, so it's logical to assume that the person is already in user's
address book. To help out user, it may be wise to pre-load user's address book in the
background and offer suggestions.

Fallback Patterns

e We pre-suppose that everything goes according to plan on the server-side: the request is
received, the necessary changes are made, and the appropriate response is sent to the
client. But what happens if there's an error on the server? Or worse yet, what if the request
never makes it to the server?

« When developing Ajax applications, it is imperative that you plan ahead for these problems
and describe how your application should work if one of these should occur.

Cancel Pending Requests

Page 20 of 26

e If an error occurs on the server, meaning a status of something other than 200 is returned,
you need to decide what to do. Chances are that if a file is not found (404) or an internal
server error occurred (302), trying again in a few minutes isn't going to help since both of
these require an administrator to fix the problem.

o The simplest way to deal with this situation is to simply cancel all pending requests. You
can set a flag somewhere in your code that says, "don't send any more requests."

e This solution has maximum impact on the Periodic Refresh Pattern.

Try Again

e Another option when dealing with errors is to silently keep trying for either a specified
amount of time or a particular number of tries.

e Once again, unless the Ajax functionality is key to the user's experience, there is no need to
notify user about the failure. It is best to handle the problems behind the scenes until it can
be resolved.

e In general, the Try Again pattern should be used only when the request is intended to occur
only once, as in a Multi-Stage Download.

8) Explain with example for handling multiple XMLHttpRequest objects in the same page.

<html>

<head>

<title>Sending Data to the Server</title>

<script language = "javascript">

var XMLHttpRequestObjectl = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObjectl = new XMLHttpRequest();
} else if (window.ActiveXObject) {
XMLHttpRequestObjectl = new
ActiveXObject("Microsoft XMLHTTP");

b
function getDatal(dataSource, divID)

{

IF(XMLHttpRequestObjectl) {

var obj = document.getElementByld(divID);
XMLHttpRequestObjectl.open("GET", dataSource);
XMLHttpRequestObjectl.onreadystatechange = function()
{

If (XMLHttpRequestObjectl.readyState == 4 &&
XMLHttpRequestObjectl.status == 200) {
obj.innerHTML = XMLHttpRequestObjectl.responseText;

}
}
XMLHttpRequestObjectl.send(null);
}

}
var XMLHttpRequestObject2 = false;

If (window.XMLHttpRequest) {
XMLHttpRequestObject2 = new XMLHttpRequest();

Page 21 of 26

} else if (window.ActiveXObject) {
XMLHttpRequestObject2 = new
ActiveXObject("Microsoft XMLHTTP");

}
function getData2(dataSource, divID)

{

IF(XMLHttpRequestObject2) {

var obj = document.getElementByld(divID);
XMLHttpRequestObject2.open("GET", dataSource);
XMLHttpRequestObject2.onreadystatechange = function()
{

iIf (XMLHttpRequestObject2.readyState == 4 &&
XMLHttpRequestObject2.status == 200) {
obj.innerHTML = XMLHttpRequestObject2.responseText;

}
}
XMLHttpRequestObject2.send(null);
}
}

</script>

</head>

<body>

<h1>Sending Data to the Server</h1>

<form>

<input type = "button™ value = "Fetch message 1"

onclick = "getDatal(‘dataresponderl.php?data=1', ‘targetDiv')">
<input type = "button™ value = "Fetch message 2"

onclick = "getData2(‘dataresponderl.php?data=2', 'targetDiv')">
<[form>

<div id="targetDiv">

<p>The fetched message will appear here.</p>

</div>

</body>

</html>

9) a) Explain any two Lists in BOOTSTRAP with examples.
b) Explain different ways to display code with Bootstrap

Page 22 of 26

Unordered list

If you have an ordered list that you would like to remove the bullets from, add
class="unstyled" to the opening tag (see Figure 2-9):

<h3>Favorite Outdoor Activities</h3>

Backpacking in Yosemite
Hiking in Arches

Delicate Arch
<lisPark Avenue

</1i>
Biking the Flintstones Trail
<ful>
Ordered list

An ordered list is a list that falls in some sort of sequential order and is prefaced by
numbers rather than bullets (see Figure 2-10). This is handy when you want to build a
list of numbered items like a task list, guide items, or even a list of comments on a blog
post:

<h3>Self-Referential Task List</h3>

Turn off the internet.</1li>
<lisWrite the book.</1li>
... Profit?

<fol>

The third type of list you get with Bootstrap is the definition list. The definition list
differs from the ordered and unordered list in that instead of just having a block-level
<1i> element, each list item can consist of both the <dt> and the <dd> elements. <dt>
stands for “definition term,” and like a dictionary, this is the term (or phrase) that is
being defined. Subsequently, the <dd> is the definition of the <dt>.

A lot of times in markup, you will see people using headings inside an unordered list.
This works, but may not be the most semantic way to mark up the text. A better method
would be creating a <d1> and then styling the <dt> and <dd> as you would the heading
and the text (see Figure 2-11). That being said, Bootstrap offers some clean default styles
and an option for a side-by-side layout of each definition:

<h3>Common Electronics Parts</h3>
<dl>
<dt>LED</dt>
<dd>A light-emitting diode (LED) is a semiconductor light source.</dd>
<dt>Servo</dt>
<dd>Servos are small, cheap, mass-produced actuators used for radio
control and small robotics.</dd>
</dl>

Page 23 of 26

9 b)

Code

There are two different key ways to display code with Bootstrap. The first is the <code>
tag and the second is the <pre> tag. Generally, if you are going to be displaying code
inline, you should use the <code> tag. But if the code needs to be displayed as a stand-
alone block element or if it has multiple lines, then you should use the <pre> tag:

<p>Instead of always using divs, in HTML5, you can use new elements like

<code> section </code>, <code> header </code>, and
<code> footer <fcode>. The html should look something like this:</p>
<pre>
article
h1i Article Heading /h1
[article
</pre>

10) a)Explain Table elements supported by BOOTSTRAP with Example.
b)Describe Optional Table classes in BOOTSTRAP with Example

Table 2-1. Table elements supported by Bootstrap

Tag Description
<table> Wrapping element for displaying data in a tabular format
<thead> (ontainer element for table header rows (<tr>) to label table columns

<tbody> (Container element for table rows (<t r>) in the body of the table

<tr> Container element for a set of table cells (<td> or <th>) that appears on a single row
<td> Default table cell
<th> Special table cell for column (or row, depending on scope and placement) labels. Must be used withina <thead>

<caption> Description or summary of what the table holds, especially useful for screen readers

Page 24 of 26

<table class="table"s>
<caption>...</caption>
<thead>
<tr>
<th>...</th>
<th>...</th>
<[tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<[tr>
</tbody>
</table>

Optional Table Classes

Along with the base table markup and the . table class, there are a few additional classes
that you can use to style the markup. These four classes are: . table-striped, .table-
bordered, .table-hover, and .table-condensed.

Striped table

By adding the .table-striped class, you will get stripes on rows within the <tbody>
(see Figure 2-14). This is done via the CSS :nth-child selector, which is not available

on Internet Explorer 7-8.

Name Phone Number
Kyle West 707-827-7001
Davey Preston 707-827-7003
Taylor Lemmon 707-827-7005

Page 25 of 26

Rank
Eagle
Eagle

Eagle

Bordered table

If you add the . table-bordered class, you will get borders surrounding every element

and rounded corners around the entire table, as shown in Figure 2-15.

Name Phone Number Rank

Kyle West 707-827-7001 Eagle

Davey Preston 707-827-7003 Eagle

Taylor Lemmon 707-827-7005 Eagle
Hover table

Figure 2-16 shows the .table-hover class. A light gray background will be added to

rows while the cursor hovers over them.

Name Phone Number Rank

Kyle West 707-827-7001 Eagle

Davey Preston 707-827-7003 Eagle

Taylor Lemmon 707-827-7005 Eagle
Condensed table

If you add the . table-condensed class, as shown in Figure 2-17, row padding is cut in

half to condense the table. This is useful if you want denser information.

Name Phone Number
Kyle West 707-827-7001
Davey Preston 707-827-7003
Taylor Lemmon 707-827-7005

Rank
Eagle
Eagle
Eagle

Page 26 of 26

	1) Write a program to implement a stack like structure in an Array using classes in Ruby.
	MODELS
	CONTROLLERS
	VIEWS
	Models:
	Views:
	Controllers:
	Helpers:
	Submission Throttling
	Predictive Fetch
	Fallback Patterns

