

1 a) Explain various scalar types and operators available in PHP.

PHP Operators:

1b) Explain various looping statements in php. Write any PHP code to explain ‘for’ loop.

 ?>

 </table>

 </body>

 </html>

2a) Outline file handling in php

2b) Illustrate steps to join web form with database in PHP.

2c) Write short note on Cookies in PHP.

• Session is a time span during which browser interacts with a particular server.

• Session begins when a browser becomes connected to a server

• It ends when the browser ceases to be connected to that server because

either it becomes connected to a different server or it is terminated.

• The HTTP protocol is essentially stateless—it includes no means to store

information about a session that is available to a subsequent session. However

using Cookies and session HTTP can be made statefull.

Cookies

• A cookie is a small object of information that consists of a name and a textual

value. A cookie is created by some software system on the server.

• The header part of an HTTP communication can include cookies. So, every request

sent from a browser to a server, and every response from a server to a browser, can

include one or more cookies.

• At the time it is created, a cookie is assigned a lifetime. When the time a cookie

has existed reaches its associated lifetime, the cookie is deleted from the

browser's host machine.

• Cookie is set in PHP with setcookie function

• First parameter is cookie’s name given as a string. The second, if present, is the

new value for the cookie, also a string. If the value is absent, setcookie undefines

the cookie.

• The third parameter, when present, is the expiration time in seconds for the

cookie, given as an integer.

• The default value for the expiration time is zero, which specifies that the cookie is

destroyed at the end of the current session. When specified, the expiration time is

often given as the number of seconds in the UNIX epoch, which began on January 1,

1970. The time function returns the current time in seconds. So, the cookie

expiration time is given as the value returned from time plus some number.

• For example,

setcookie("voted", "true", time() + 86400);

This call creates a cookie named "voted" whose value is "true" and whose lifetime is

one day (86,400 is the number of seconds in a day).

• To delete a cookie, use the setcookie() function with an expiration date in the

past: setcookie("voted", "true", time() - 86400);

• All cookies that arrive with a request are placed in the implicit $ COOKIES array,

which has the cookie names as keys and the cookie values as values.

• We can retrieve the value of the cookie using the global variable $_COOKIE

$_COOKIE[$cookie_n

ame] Eg.

$_COOKIE["voted"]

3a) Illustrate with syntax any eight built in methods for arrays in Ruby.

3b) Explain code blocks and iterators with sample code in Ruby.

3c) Summarize the following string methods 1) Capitalize 2) Strip 3)chop

4a) with a neat diagram explain directory structure of Rails application

4 b) Illustrate the concept of Classes in Ruby with any example.

5a) What is Ajax? Explain with a diagram, how it is different from traditional web applications.

5b) Ajax web Application Model

6a) Write an example illustrate sending data to server using methods of GET and POST for

HTTPRequestobject.

<html>

 <head>

 <title>An Ajax example</title>

 <script language = "javascript">

 var XMLHttpRequestObject = false;

 if (window.XMLHttpRequest) {

 XMLHttpRequestObject = new XMLHttpRequest();

 } else if (window.ActiveXObject) {

 XMLHttpRequestObject = new

ActiveXObject("Microsoft.XMLHTTP");

 }

 function getData(dataSource, divID){

 if(XMLHttpRequestObject) {

 var obj = document.getElementById(divID);

 XMLHttpRequestObject.open("GET", dataSource);

 XMLHttpRequestObject.onreadystatechange = function()

 {

 if (XMLHttpRequestObject.readyState == 4 &&

 XMLHttpRequestObject.status == 200) {

 obj.innerHTML =

XMLHttpRequestObject.responseText;

 }

 }

 XMLHttpRequestObject.send(null);

 }

 }

 </script>

 </head>

 <body>

 <H1>An Ajax example</H1>

 <form>

 <input type = "button" value = "Fetch the message"

 onclick = "getData('data.txt', 'targetDiv')">

 </form>

 <div id="targetDiv">

 <p>The fetched message will appear here.</p>

 </div>

 </body>

</html>

Program Using POST

<html>

 <head>

 <title>An Ajax example</title>

 <script language = "javascript">

 var XMLHttpRequestObject = false;

 if (window.XMLHttpRequest) {

 XMLHttpRequestObject = new XMLHttpRequest();

 } else if (window.ActiveXObject) {

 XMLHttpRequestObject = new

ActiveXObject("Microsoft.XMLHTTP");

 }

 function getData(dataSource, divID, data){

 if(XMLHttpRequestObject) {

 var obj = document.getElementById(divID);

 XMLHttpRequestObject.open("POST", dataSource);

 XMLHttpRequestObject.setRequestHeader('Content-Type',

'application/x-www-form-urlencoded');

 XMLHttpRequestObject.onreadystatechange = function()

 {

 if (XMLHttpRequestObject.readyState == 4 &&

 XMLHttpRequestObject.status == 200) {

 obj.innerHTML =

XMLHttpRequestObject.responseText;

 }

 }

 XMLHttpRequestObject.send("data="+data);

 }

 }

 </script>

 </head>

 <body>

 <H1>An Ajax example</H1>

 <form>

 <input type = "button" value = "Fetch the first message"

 onclick = "getData('dataresponder.php','targetDiv',1)">

 <input type = "button" value = "Fetch the second message"

 onclick = "getData('dataresponder.php','targetDiv',2)">

 </form>

<div id="targetDiv">

 <p>The fetched message will appear here.</p>

 </div>

 </body>

</html>

6b) AJAX Principles:

❑ Minimal traffic: Ajax applications should send and receive as little information as possible to

and from the server. In short, Ajax can minimize the amount of traffic between the client

and the server. Making sure that your Ajax application doesn’t send and receive unnecessary

information adds to its robustness.

❑ No surprises: Ajax applications typically introduce different user interaction models than

traditional web applications. As opposed to the web standard of click-and-wait, some Ajax

applications use other user interface paradigms such as drag-and-drop or double-clicking. No

matter what user interaction model you choose, be consistent so that the user knows what

to do next.

❑ Established conventions: Don’t waste time inventing new user interaction models that your

users will be unfamiliar with. Borrow heavily from traditional web applications and desktop

applications, so there is a minimal learning curve.

❑ No distractions: Avoid unnecessary and distracting page elements such as looping

animations and blinking page sections. Such gimmicks distract the user from what he or she

is trying to accomplish.

❑ Accessibility: Consider who your primary and secondary users will be and how they most

likely will access your Ajax application. Don’t program yourself into a corner so that an

unexpected new audience will be completely locked out. Will your users be using older

browsers or special software? Make sure you know ahead of time and plan for it.

❑ Avoid entire page downloads: All server communication after the initial page download

should be managed by the Ajax engine. Don’t ruin the user experience by downloading small

amounts of data in one place but reloading the entire page in others.

User first: Design the Ajax application with the users in mind before anything else. Try to make the

common use cases easy to accomplish and don’t be caught up with how you’re going to fit in

advertising or cool effects.

6c) Difference between Synchronous and asynchronous requests.

7a) Explain how to handle multiple XMLHTTPRequest objects in the same page.

<html>

 <head>

 <title>Sending Data to the Server</title>

 <script language = "javascript">

 var XMLHttpRequestObject1 = false;

 if (window.XMLHttpRequest) {

 XMLHttpRequestObject1 = new XMLHttpRequest();

 } else if (window.ActiveXObject) {

 XMLHttpRequestObject1 = new

 ActiveXObject("Microsoft.XMLHTTP");

 }

 function getData1(dataSource, divID)

 {

 if(XMLHttpRequestObject1) {

 var obj = document.getElementById(divID);

 XMLHttpRequestObject1.open("GET", dataSource);

 XMLHttpRequestObject1.onreadystatechange = function()

 {

 if (XMLHttpRequestObject1.readyState == 4 &&

 XMLHttpRequestObject1.status == 200) {

 obj.innerHTML = XMLHttpRequestObject1.responseText;

 }

 }

 XMLHttpRequestObject1.send(null);

 }

 }

 var XMLHttpRequestObject2 = false;

 if (window.XMLHttpRequest) {

 XMLHttpRequestObject2 = new XMLHttpRequest();

 } else if (window.ActiveXObject) {

 XMLHttpRequestObject2 = new

 ActiveXObject("Microsoft.XMLHTTP");

 }

 function getData2(dataSource, divID)

 {

 if(XMLHttpRequestObject2) {

 var obj = document.getElementById(divID);

 XMLHttpRequestObject2.open("GET", dataSource);

 XMLHttpRequestObject2.onreadystatechange = function()

 {

 if (XMLHttpRequestObject2.readyState == 4 &&

 XMLHttpRequestObject2.status == 200) {

 obj.innerHTML = XMLHttpRequestObject2.responseText;

 }

 }

 XMLHttpRequestObject2.send(null);

 }

 }

 </script>

 </head>

 <body>

 <h1>Sending Data to the Server</h1>

 <form>

 <input type = "button" value = "Fetch message 1"

 onclick = "getData1('dataresponder1.php?data=1', 'targetDiv')">

 <input type = "button" value = "Fetch message 2"

 onclick = "getData2('dataresponder1.php?data=2', 'targetDiv')">

 </form>

 <div id="targetDiv">

 <p>The fetched message will appear here.</p>

 </div>

 </body>

</html>

7b) Explain the pattern of predictive fetch using Ajax.

• The Predictive Fetch pattern is a relatively simple idea that can be somewhat
difficult to implement: the Ajax application guesses what the user is going to
do next and retrieves the appropriate data.

• In a perfect world, it would be wonderful to always know what the user is
going to do and make sure that the next data is readily available when
needed. In reality, however, determining future user action is just a guessing
game depending on user’s intentions.

• Suppose user is reading an online article that is separated into three pages. It
is logical to assume that if user is interested in reading the first page, then
user also interested in reading the second and third page.

• So if the first page has been loaded for a few seconds (which can easily be
determined by using a timeout), it is probably safe to download the second
page in the background. Likewise, if the second page has been loaded for a
few seconds, it is logical to assume that the reader will continue on to the third
page.

• As this extra data is being loaded and cached on the client, the reader
continues to read and barely even notices that the next page comes up
almost instantaneously after clicking the Next Page link.

• Example: This approach is taken by many web-based e-mail systems,
including Gmail and AOL Webmail; During the writing of an e-mail, its
general e-mail is for someone whom user knows, so it's logical to assume that
the person is already in user's address book. To help out user, it may be wise
to pre-load user's address book in the background and offer suggestions.

7c) Write a note on submission throttling.

• Submission throttling solves the issue of when to send user data to the server.
• In a traditional web site or web application, each click makes a request back

to the server so that the server is always aware of what the client is doing.
• In the Ajax model, the user interacts with the site or application without

additional requests being generated for each click.
• In a traditional web solution data send back to the server every time when

user action occurs. Thus, when the user types a letter, that letter is sent to the
server immediately. The process is then repeated for each letter typed.

• The problem with this approach is that it has the possibility to create a large
number of requests in a short amount of time, which may not only cause
problems for the server but may cause the user interface to slow down as
each request is being made and processed.

• The Submission Throttling design pattern is an alternative approach to solve
this problematic issue.

• Using Submission Throttling, you buffer the data to be sent to the server on
the client and then send the data at predetermined times.

o Submission Throttling typically begins either when the web site or
application first loads or because of a specific user action.

o Then, a client-side function is called to begin the buffering of data.
o Every so often, the user's status is checked to see if user is idle or not.

If the user is still active, data continues to be collected.
o When the user is idle, means not performing any action, it's time to

decide whether to send the data. This determination varies such as,

data is send only when it reaches a certain size, or data is sending
every time when the user is idle.

o After the data is sent, the application typically continues to gather data
until either a server response or some user action signals to stop the
data collection.

• Example: Google Suggest feature does this brilliantly. It doesn't send a
request after each character is typed. Instead, it waits for a certain amount of
time and sends all the text currently in the text box. The delay from typing to
sending has been fine-tuned to the point that it doesn't seem like much of a
delay at all. Submission Throttling, in part, gives Google Suggest its speed.

8a) with example, explain pattern of periodic refresh and fall back pattern in Ajax.

Fallback Patterns

• We pre-suppose that everything goes according to plan on the server-side:
the request is received, the necessary changes are made, and the
appropriate response is sent to the client. But what happens if there's an error
on the server? Or worse yet, what if the request never makes it to the server?

• When developing Ajax applications, it is imperative that you plan ahead for
these problems and describe how your application should work if one of these
should occur.

Cancel Pending Requests

• If an error occurs on the server, meaning a status of something other than 200
is returned, you need to decide what to do. Chances are that if a file is not
found (404) or an internal server error occurred (302), trying again in a few
minutes isn't going to help since both of these require an administrator to fix
the problem.

• The simplest way to deal with this situation is to simply cancel all pending
requests. You can set a flag somewhere in your code that says, "don't send
any more requests."

• This solution has maximum impact on the Periodic Refresh Pattern.

Try Again

• Another option when dealing with errors is to silently keep trying for either a
specified amount of time or a particular number of tries.

• Once again, unless the Ajax functionality is key to the user's experience, there
is no need to notify user about the failure. It is best to handle the problems
behind the scenes until it can be resolved.

• In general, the Try Again pattern should be used only when the request is
intended to occur only once, as in a Multi-Stage Download.

8b) Illustrate how to implement the Ajax pattern of multistage download.

While establishing asynchronous communication, a set of patterns are

followed to make the process more efficient. One such design pattern is

Multistage Downloading.

Until now, some action of the user (like click) has triggered the process of

fetching the response. This includes a small wait period from the user’s side

until it is fetched. But in certain cases this can be annoying. The goal is to

automatically fetch data without the user having to ask for it.

Multistage Downloading is necessary when a huge amount of data needs to

be downloaded. The order in which this download occurs is very crucial. The

most relevant and light data must arrive first so that the user can get started.

The heaviest ones should probably arrive later. The advantage of this

approach is that, if the user navigates away from the page fairly quickly, then

the heavy downloads are avoided.

This process should include indicators (like progress bars) to inform the user

that more data is arriving. It should also have place holders which can accept

this arriving data easily.

9a) What is Bootstrap? Explain the Bootstrap life structure with a neat diagram

and give an example of basic HTML template using Bootstrap.

What Is Bootstrap?

Bootstrap is a free and open-source CSS framework directed at responsive, mobile-first

front-end web development. It contains CSS- and (optionally) JavaScript-based design

templates for typography, forms, buttons, navigation and other interface components.

Bootstrap is an open source product from Mark Otto and Jacob Thornton who, when it was initially

released, were both employees at Twitter. There was a need to standardize the frontend toolsets of

engineers across the company

In the earlier days of Twitter, engineers used almost any library they were familiar with to meet

front-end requirements. Inconsistencies among the individual applications made it difficult to scale

and maintain them. Bootstrap began as an answer to these challenges and quickly accelerated

during Twitter’s first Hackweek. By the end of Hackweek, we had reached a stable version that

engineers could use across the company. — Mark Otto

Since Bootstrap launched in August 2011, it has taken off in popularity. It has evolved from being an

entirely CSS-driven project to include a host of JavaScript plugins and icons that go hand in hand with

forms and buttons. At its base, it allows for responsive web design and features a robust 12-column,

940px-wide grid. One of the highlights is the build tool on Bootstrap’s website, where you can

customize the build to suit your needs, choosing which CSS and JavaScript features you want to

include on your site. All of this allows frontend web development to be catapulted forward, building

on a stable foundation of forward-looking design and development. Getting started with Bootstrap is

as simple as dropping some CSS and JavaScript into the root of your site.

Bootstrap File Structure bootstrap

bootstrap/

 ├── css/

 │ ├── bootstrap.css

 │ ├── bootstrap.min.css

 ├── js/

 │ ├── bootstrap.js

 │ ├── bootstrap.min.js

 └── img/

 ├── glyphicons-halflings.png

 └── glyphicons-halflings-white.png

The Bootstrap download includes three folders: css, js, and img. For simplicity, add these to the root of your

project. Minified versions of the CSS and JavaScript are also included. It is not necessary to include both the

uncompressed and the minified versions.

Basic HTML Template

Normally, a web project looks something like this:

<!DOCTYPE html>

<html>

 <head>

 <title>Bootstrap 101 Template</title>

 </head>

 <body>

 <h1>Hello, world!</h1>

 </body>

</html>

With Bootstrap, we include the link to the CSS stylesheet and the JavaScript:

<!DOCTYPE html>

<html>

 <head>

 <title>Bootstrap 101 Template</title>

 <link href="css/bootstrap.min.css" rel="stylesheet">

 </head>

 <body>

 <h1>Hello, world! </h1>

 <script src="js/bootstrap.min.js"></script>

 </body>

</html>

9b)With a sample code explain Fluid grid system and container layouts.

Fluid Grid System
The fluid grid system uses percentages instead of pixels for column widths. It has the
same responsive capabilities as our fixed grid system, ensuring proper proportions for
key screen resolutions and devices. You can make any row “fluid” by changing .row
to .row-fluid. The column classes stay exactly the same, making it easy to flip between
fixed and fluid grids. To offset, you operate in the same way as the fixed grid system—
add .offset* to any column to shift by your desired number of columns:

Nesting a fluid grid is a little different. Since we are using percentages, each .row resets
the column count to 12. For example, if you were inside a .span8, instead of
two .span4 elements to divide the content in half, you would use two .span6 divs (see Figure
1-4). This is the case for responsive content, as we want the content to fill 100%
of the container:

Container Layouts
To add a fixed-width, centered layout to your page, simply wrap the content in <div
class="container">...</div>. If you would like to use a fluid layout but want to wrap
everything in a container, use the following: <div class="container-fluid">...</
div>. Using a fluid layout is great when you are building applications, administration
screens, and other related projects.

10a) Explain with an example, the Bootstrap button classes for different styles of Button in

Bootstrap CSS.

10b) Explain the following HTML concepts with Bootstrap CSS, 1) Headings 2) Emphasis classes.

