

1 a) Explain various scalar types and operators available in PHP.

Data Types

PHP provides four scalar types namely Boolean. integer. double and string and two
compound types namely array and object and two special types namely resource and NULL.

PHP has a single integer type. named integer. This type is same as long type in C. The size of
an integer type is generally the size of word in the machine. In most of the machines that size

will be 32 bits.

PHP's double type corresponds to the double type in C and its successors. Double literals can
contain a decimal point, an exponent or both. An exponent is represented using E or e
followed by a signed integer literal. Digits before and after the decimal point are optional. So,
both .12 and 12, are valid double literals.

String is a collection of characters. There 15 no special tvpe for characters in PHP. A character
is considered as a string with length 1. String literals are represented with single quotes or
double quotes. In a string literal enclosed in single quotes. escape sequences and variables are
not recognized and no substitutions occurs. Such substuttion is known as interpolation. In
string literals enclosed in double quotes, escape sequence and variables are recognized and
corresponding action is taken.

The only two possible values for a Boolean type are TRUE and FALSE both of which are
case-insensitive. Integer value 0 is equal to Boolean FALSE and anvthing other than 0 is

equal to TRUE. An empty string and string "0" are equal to Boolean FALSE and remaining
other strings are equal to TRUE. Only double value equal to Boolean FALSE 15 0.0.

PHP Operators:

Operators are used in expressions to perform operations on operands. There are several
operators supported by PHP which are categorized into following categories:

Arithmetic operators
Assignment operators
Comparison operators
Increment/Decrement operators
Logical operators

String operators

Array operators

Arithmetic Operators

PHP arithmetic operators are used along with numbers to perform operations like addition,
subtraction, multiplication etc. Below is a list of arithmetic operators:

Operator | Name Example Description

| Addition $x + Sy Sum of x and y

- Subtraction $x - Sy Difference of x and y

+ Multiplication $x * 3y Product of x and y

Division $x /Sy Quotient of x divided by v

% Modulus $x % Sy Remainder of x divided by y

i Exponentiation | $x ** $y Result of x raised to the power of ¥

Assignment Operators

PHP assignment operators are used in assignment expressions to store the value of expression

In to a variable. Below is a list of assignment operators:

Assignment | Same as Description

X=y X=y Assigning value of v to x

X+=v X=X+¥ Adding x and v and store the result in x
X=¥ X=X-¥ Subtracting v from x and store the result in x
X F=y X=x%y Multiplying x and v and store the result in x
X/=y X=x/vy Dividing x by v and store the quotient in X

X %=y Xx=x%Yy Dividing x by v and store the remainder in x

Increment/Decrement Operators

The increment/decrement operators are used to increment the value of variable by 1 or
decrement the value of variable by 1. The increment operator is ++ and decrement operator is

Relational or Comparison Operators

PHP comparison operators are used to compare two values and are frequently seen in
Boolean expressions. Below is a list of comparison operators:

Operator | Name Example | Description
== Equal Sx==9%y | Returns true if x and y are equal
: Returns true if X and y are equal and of
== Identical Sx === Sy % q
same type
I= Not equal $x =8y Returns true if X and y are not equal
— Not identical Sx 1— $y R{.‘lUﬂ'xs true 1f X and y are not equal and
- | of same type
< Less than Sx < By Returns true if X is less than y
Returns true if x 1s less than or equal to
<= Less than or equal to Sx <= Sy p q
> Greater than $x = $y Returns true if X is greater than y
; Returns true if x is greater than or equal
= Greater than or equal to | $x == $y toy g 4
""" Not equal $x == $y Returns true 1f X and y are not equal

Logical Operators

PHP logical operators are used find the Boolean value of multiple conditional expressions.
Below 1s a list of logical operators:

Operator | Name | Example | Description
and And $x and $y | Returns true when both x and y are true
or Or $x or $y Returns true when either x or v or both of them are true
xor Xor $x xor $y | Returns true when either x or y is true
&& And $x && Sy | Returns true when both x and y are true

Or $x || Sy Returns true when either x or y or both of them are true
! Not '$x Returns true when x is false and vice versa

String Operators

PHP provides two operators which are used with strings only. They are listed below:

Operator | Name Example Description
Concatenation Sstrl.Sstr2 | strland str2 are concatenated
Concatenation Assignment Sstrl.=Sstr2 | str2 1s appended to strl

Array Operators

Below is a list of operators which are used with arrays:

Operator | Name Example Description

s : Returns true if x and y have the same key-value

Equality $x==Sy : 5 z
pairs
— Identity $x=—==Sy Returns true if x and y have the same key-value
pairs in same order and are of same type

I= Inequality $x!=3y Returns true if x and y are not equal
= Non-Identity | $x!==8y Returns true if x and y are not identical
<> Inequality $x<>8y Returns true if x and y are not equal
+ Union $x+8y Returns union of x and y

1b) Explain various looping statements in php. Write any PHP code to explain ‘for’ loop.

Iteration or Loop Statements

The iteration statements in PHP allows PHP processor to iterate over or repeat a set of
statements for a finite or infinite times. lteration statements supported by PHP are while, do-
while, for and foreach.

Syntax of while loop 1s given below:

while(condition / expression)

{

statements(s);

Syntax of do-while loop 1s given below:

do

1}
1

statement(s);
1
]

while(condition / expression);

Syntax of for loop is given below:

for(initialization; condition / expression; increment/decrement)

i
1

statement(s);

The foreach loop 1s used to iterate over array elements and its syntax is given below:

//For normal arrays

foreach(array as variable name)

|
1

statement(s);

-

or

//For associative arrays

forecach(array as key => value)
{
statement(s);

1
'

Jump Statements

The jump statements available in PHP are break and continue. The break statement is used to
break the control from a loop, take it to the next statement after the loop and continue is used
to skip the control from current line to the next iteration of the loop.

<?xml version = "1.0" encoding = "utf-8-?>
<IDOCTYPE html PUBLIC "-//w3c//DTD XHTML 1.1 //EN"
“http://www.w3.org/TR/xhtml11/DTD/xhtm] 1] .dtd">

<le= powers.php
An example to illustrate loops and arithmetic

-3
<html zmlns = "http://www.w3.org/1999/xhtml">
<head> <title> powers.php </title>
</head>
<body>
<table border = "border">
<caption> Powers table </caption>
<tr>

<ih> Number </th>
<th> Square Root </th>
<th> Square </th>
<th> Cube </th>
<th> Quad </th>
</tr>
<?php
for ($mumber = 1; $number <=10; $number++) {
$rool = sqrt($number);
$square = pow(Snumber, 2);
Scube pow($number, 3);
Squad pow({ $number, 4);
print("<tr align = ‘center'> <td> $number </td>");
print("<td> $root </Ld> <td> $square </td>");
print("<td> Scube </td> <td> Squad </td> </tr>");

>
</table>
</body>
</html>

2a) Outline file handling in php

Because PHP is a server-side technology, it is able to create, read, and write files
on the server system. In fact, PHP can deal with files residing on any server F sys-
tem on the Intemet usmg both HTTP and FTP protocols.

11.11.1 Opening and Closing Files

The first step in some file operations is to open it, a process that prepares the
file for use and associates a program variable with the file for future reference.
This program variable is called the file variable. The fopen function performs
these operations. It takes two parameters: the filename, including the path to it
if it is in a different directory, and a use indicator, which specifies the operation
or operations that must be performed on the file. Both parameters are given as
strings. The fopen function returns the reference to the file for the file vari-
able. Every open file has an internal pointer that is used to indicate where the
next file operation should take place within the file. We call this pointer the file
pointer. Table 11.4 describes the possible values of the use indicator.

It is possible for the fopen function to fail—for example, if an attempt is
made to open a file for reading but no such file exists. It would also fail if the file
access permissions did not allow the requested use of the file. The fopen func-
tion returns FALSE if it fails. PHP includes the die function, which produces a
message and stops the interpretation process. The die function is often used

LS Read only. The file pointer is initialized to the beginning of the file.

b < Read and write an existing file. The file pointer is initialized to the
beginning of the file; if a read operation precedes a write opera-
tion, the new data is written just after where the read operation
left the file pointer.

"w" Write only. Initializes the file pointer to the beginning of the file;
creates the file if it does not exist.

"wt" Read and write. Initializes the file pointer to the beginning of the
file; creates the file if it does not exist. Always initializes the file
pointer to the beginning of the file before the first write, destroying
any existing data.

- Y Write only. If the file exists, initializes the file pointer to the end of
the file; if the file does not exist, creates it and initializes the file
pointer to its beginning.

"at+" Read and write a file, creating the file if necessary; new data is
written to the end of the existing data.

with input and output operations, which sometimes fail. For example, the fol-
lowing statement attempts to open a file named testdata.dat for reading
only, but calls die if the open operation fails:

$file var = fopen("testdata.dat", "r") or
die ("Error — testdata.dat cannot be opened");

This form appears a bit odd, but is exactly what is needed. Because the or oper-
ator has lower precedence than a function call, die will only be called if fopen
fails, in which case fopen returns FALSE.

The problem of fopen failing because the specified file does not exist can
be avoided by determining whether the file exists with file_exists before
calling fopen. The file_exists function takes a single parameter, the file’s
name. It returns TRUE if the file exists, FALSE otherwise.

A file is closed with the fclose function, which takes a file variable as its
only parameter.

operation stops when either the end-of-file marker is read or the specified num-
ber of bytes has been read.

Large collections of data are often stored in database systems, so usually
only smaller data sets are stored in files. Therefore, files are often read in their
entirety with a single call to fread. If the whole file is to be read at once, the
file’s length is given as the second parameter to fread. The best way to get the
correct file length is with the filesize function, so a call to filesize is
often used as the second parameter to fread. The filesize function takes a
single parameter, the name of the file (not the file variable). For example, to
read the entire contents of the file testdata.dat as a string into the variable
$file_string, the following statement could be used:

$file _string = fread($file_var,
filesize("testdata.dat"));

One alternative to fread is £ile, which takes a filename as its parameter
and returns an array of all of the lines of the file. (A line is a string of non-newline
characters, followed by a newline.) One advantage of £ile is that the file open
and close operations are not necessary. For example, the following statement
places the lines of testdata.dat into an array named @file lines:

$file lines = file("testdata.dat");

PHP has another file input function that does not require calling fopen,
file get_contents, which takes the file’s name as its parameter. This func-
tion reads the entire contents of the file. For example, consider the following
call:

#file_string = file get_contents("testdata.dat");

A single line of a file can be read with £gets, which takes two parameters:
the file variable and a limit on the length of the line to be read. Consider the fol-
lowing statement:

$line = fgets($file_var, 100);

This statement reads characters from testdata.dat until it finds a newline
character, encounters the end-of-file marker, or has read 99 characters. Note
that the maximum number of characters fgets reads is one fewer than the limit
given as its second parameter.

A single character can be read from a file with £gete, whose only parame-
ter is the file variable. When reading a file by lines or by characters, the read
operation must be controlled by the detection of the end of the file. This can be
done with the feof function, which takes a file variable as its only parameter. It
returns a Boolean value: TRUE if the last read character of the file was the end-
of-file character, FALSE otherwise.

11.11.3 Writing to a File

The fwrite® function takes two parameters: a file variable and the string to be
written to the file. It is possible to include a third parameter, which would be
used to specify the number of bytes to be written. This parameter is rarely
needed. The fwrite function returns the number of bytes written. The follow-
ing is an example of a call to fwrite:

$bytes written = fwrite($file var, Sout_data);

This statement writes the string value in $out_data to the file referenced with
$file_var and places the number of bytes written in $bytes_written. Of
course, this will work only if the file has been opened for writing.

The file put contents function is the counterpart of
file_get_contents—it writes the value of its second parameter, a string, to
the file specified in its first parameter. For example, consider the following call:

file put_contents("savedata.dat", $str);

11.11.4 Locking Files

If it is possible for more than one script to access a file at the same time, the
potential interference of those accesses can be prevented with a file lock. The
lock prevents any other access to the file while the lock is set. Scripts that use
such files lock them before accessing them and unlock them when the access is
completed. File locking is done in PHP with the £1ock function, which should
sound familiar to UNIX programmers. The £1lock function takes two parame-
ters: the file variable of the file and an integer that specifies the particular opera-
tion. A value of 1 specifies that the file can be read by others while the lock is
set, a value of 2 allows no other access, and a value of 3 unlocks the file.

2b) lllustrate steps to join web form with database in PHP.

13.6.2 Connecting to MySQL and Selecting a Database

The PHP function mysqgl_connect connects a script to a MySQL server.
This function takes three parameters, all of which are optional. The first is the
host that is running MySQL; the default is localhost (the machine on which
the script is running). The second parameter is the username for MySQL; the
default is the username in which the PHP process runs. The third parameter is
the password for the database; the default is blank (works if the database does
not require a password). For example, if the default parameters were acceptable,
we could use the following:

$db = mysqgl connect();

Of course, the connect operation could fail, in which case the value returned
would be false (rather than a reference to the database). Therefore, the call to
mysql_connect usually is used in conjunction with die.

The connection to a database is terminated with the mysql_close func-
ton. This function is not necessary when using MySQL through a PHP script
because the connection will be closed implicitly when the script terminates.

When running MySQL from the command line, a database must be
selected as the current, or focused, database. This is also necessary when using
MySQL through PHP; it is accomplished with the mysql_select_db func-
tion, as shown in the following:

mysql_select_db("cars");

13.6.2 Requesting MySQL Operations

MySQL operations are requested through the mysql_query function. Typi-
cally, the operation, in the form of a string literal, is assigned to a variable. Then
mysql_gquery is called with the variable as its parameter. For example:

Squery = "SELECT * from Cbrvettes";
$result = mysql query($query);

The return value from mysql_query is used to identify, internally, the data
that resulted from the operation. In most cases, the first thing to do with the
result is to determine the number of rows. This is obtained with the
mysgl num rows function, which is given the result value returned by
mysgl_query, as shown in the following:

$num_rows = mysql_num rows(S$result);

The number of fields in a result row can be determined with
mysgl_num_fields, as shown in the following:

$num _fields = mysqgl num_ fields($result);

The rows of the result can be retrieved into several different forms. We will
use mysql_fetch_array, which returns an array of the next row. Then the
field values can be obtained by subscripting the return array with the column
names. For example, if the result of a query had columns for State_id and
State, we could display the results with the following code:

$num_rows = mysql_num_ rows(S$result);

for ($row_num = 1; $row_num <= $num_rows; S$row_num++) {
$row = mysql_ fetch_ array(S$result);
print "<p> Result row number" . $row_num .
". State_id: ";
print htmlspecialchars($row["State_id"]);
print " State: ";
print htmlspecialchars(S$row["State"]);
print "</p>";

The situation in which the column names are not known is considered in
Section 13.6.4, which includes a complete example of accessing a database

through PHP and MySQL.

2c) Write short note on Cookies in PHP.

e Session is a time span during which browser interacts with a particular server.

e Session begins when a browser becomes connected to a server

e [t ends when the browser ceases to be connected to that server because
either itbecomes connected to a different server or it is terminated.

e The HTTP protocol is essentially stateless—it includes no means to store
informationabout a session that is available to a subsequent session. However
using Cookies andsession HTTP can be made statefull.

Cookies

e A cookie is a small object of information that consists of a name and a textual
value. Acookie is created by some software system on the server.

e The header part of an HTTP communication can include cookies. So, every request
sentfrom a browser to a server, and every response from a server to a browser, can
includeone or more cookies.

e Atthetime itis created, a cookie is assigned a lifetime. When the time a cookie
has existed reaches its associated lifetime, the cookie is deleted from the
browser's hostmachine.

e Cookie is set in PHP with setcookie function

e First parameter is cookie’s name given as a string. The second, if present, is the
new value for the cookie, also a string. If the value is absent, setcookie undefines
the cookie.

e The third parameter, when present, is the expiration time in seconds for the
cookie,given as an integer.

e The default value for the expiration time is zero, which specifies that the cookie is
destroyed at the end of the current session. When specified, the expiration time is
oftengiven as the number of seconds in the UNIX epoch, which began on January 1,
1970. Thetime function returns the current time in seconds. So, the cookie
expiration time is givenas the value returned from time plus some number.

e For example,
setcookie("voted", "true", time() + 86400);

This call creates a cookie named "voted" whose value is "true" and whose lifetime is
oneday (86,400 is the number of seconds in a day).

e To delete a cookie, use the setcookie() function with an expiration date in the
past:setcookie("voted", "true", time() - 86400);

e All cookies that arrive with a request are placed in the implicit S COOKIES array,
whichhas the cookie names as keys and the cookie values as values.

e We can retrieve the value of the cookie using the global variable S_COOKIE
S_COOKIE[Scookie_n
amel]Eg.

S_COOKIE["voted"]
3a) Illustrate with syntax any eight built in methods for arrays in Ruby.

Built-in methods

 Shift, unshift and pop, push
list=[2, 4, 17, 3]

list.shift list.pop
o/p [4,17,3] of/p [2,4,17]

list.unshift(8) list.push(8,5)

o/p [8,4,17,3] o/p [2,4,17,8,5]
Concat

> J1PE]l = [);: 3, 8, 1)

m>» Y, 35 3¢ 1)

>> list2 = [2, &, 6, 8)

=> [2, 4, 6, 8)
>> listl.concat(list2)
=> (1, 3, 5, 7, 2, &4, 6, 8]

>> listl = [0.1, 2.4, 5.6, 7.9)

> [0.1, 2.8, 5.0, 7.9)

5> I18t2 = [3.8, R+:1; TeS)

Yy 3.8, 215 75)

>> list3 = listl + list2

=> (0.1, 2:.8; 5:6; 7.9, 3.4, 2.1, 7:5)

Reverse

>>
=>
>>

>>
=>

>>

>>
=>
>>
=>

list = [2, 4,
(2, 4, 8, 16)
list.reverse
[16, 8, 4, 2]
list

[2, 4, 8, 16]

list = [2, 4, 8,

[2, 4, 8, 16)
list.reverse!
[16, 8, 4, 2]
list

(16, 8, 4, 2]

8,

16]

16]

Include?

=>
>>
=>
>>

(2, 4, 8,

true
false

Sort

list = [16, 8,
(16, 8, 4, 2)
list.sort

(2, &; 8; 16)

16])
list.include?(4)

list.include?(10)

>> list2 = ["jo", "fred", "mike",
=> ["jo", "fred", "mike", "larry"]
>> list2.sort
=> ["fred”, "jo", “"larry”, “mike"]

>> setl = [2, 4, 6, 8]

=> [2, 4, 6, 8]

>> set2 = [4, 6, 8, 10)

=> [4, 6, 8, 10]

>> setl & set2

=> [4, 6, 8]

>> setl - set2

=> [2]

>> setl | set 2

> 12, 4; §, B, 10)

" larry "]

3b) Explain code blocks and iterators with sample code in Ruby.

>> 4.times {puts "Hey!"}
Hey!
Hey!
Hey!
Hey!

>> list = [2, 4, 6, 8]

=> [2, 4, 6, 8]

>> list.each {|value| puts value}
2

4

6

8

>> ["Joe", "Jo", "Joanne"].each {|name| puts name}
Joe
Jo

Joanne

>> 5.upto(8) {|value| puts value}
5

6
7
8

>> 0.step(6, 2) {|value| puts value}
0

2
<
6

>> list = [5, 10, 15, 20]

>> list.collect {|value| value = value - 5}
=> [0, 5, 10, 15]

>> list

=> [5, 10, 15, 20]

>> list.collect! {|value| value = value - 5}
=> [0, 5, 10, 15]

>> list

=> [0, 5, 10, 15)

>> def get_name

>> puts "Your name:"

>> name = gets

>> vyield(name)

>> end

=> nil

>> get name {|name| puts "Hello, " + name}
Your name:

Freddie

Hello, Freddie

3c) Summarize the following string methods 1) Capitalize 2) Strip 3)chop

Method Action

capitalize Convert the first letter to uppercase and the rest of the letters
to lowercase

chop Removes the last character

strip Removes the spaces on both ends

4a) with a neat diagram explain directory structure of Rails application

exercises

|

railsl

|

app

controllers views models helpers

\,

sa
application layouts ly

say_controller

(class SayController)
hello.rhtml

Figure 15.2 Directory structure for the rails1 application

http://localhost/say/hello

1. Instantiate SayController class
2. Call the hello method

Rails
3. Search the views/say directory for hello.rhtml

4. Process hello.rhtml with ERb

Processed hello.rhtml

Browser

4 b) lllustrate the concept of Classes in Ruby with any example.

class Stack2 class

def initialize(len = 100)
@stack_ref = Array.new(len)
@max_len = len
@top_index = -1

end

I push method
def push(number)
if @top_ index == @max_len
puts "Error in push - stack is full®"
else
@top _index += 1
@stack_ref[@top_index] = number
end
end

def pop()
if @top index == -1
puts "Error in pop - stack is empty"
else
@top_index -= 1
end
end

end

mystack = Stack2 class.new(50)

mystack.push(42)

mystack.push(29)

puts "Top element is (should be 29): #{mystack.top}"

puts "Second from the top is (should be 42): #{mystack.top2}"
mystack.pop

mystack.pop

mystack.pop # Produces an error message - empty stack

5a) What is Ajax? Explain with a diagram, how it is different from traditional web applications.

AJAX

AJAX stands for — Asynchronous JavaScript and XML

Ajax is nothing more than an approach to web interaction. This
approach involves transmitting only a small amount of information
to and from the server in order to give the user the most responsive
experience possible.

Ajax is a set of web development techniques using many web
technologies on the client side to create asynchronous web
applications. With Ajax, web applications can send and retrieve data
from a server asynchronously without interfering with the display and

behaviour of the existing page

Ajax is not a technology, but rather a programming concept.®

Traditional Web Application Model

Web Browser

»

Ajax Web Application Model

Web Browser

HTML, CSS
User |
Interface »
JavaScript
Call

HTML, Images, ol
S, JavaScript Dt ()
> ——— > | Database
Query/Data
Request N Request
Web Server
=
Data Data
Ajax)
Engine » ——» | Database
HTTP Query/Data
Request N Request

Web Server

5b) Ajax web Application Model

Browser Client

User Interface

T
javaScript Call T

¢ HTML+CSS+JavaScript
1

AJAX Engine

\ l A J

HTTP Request

XML Data
3 * ™
Web or XML Server

¥ A

Server side logic & data

Server-Side Systems

AJAX Web
Application Model

6a) Write an example illustrate sending data to server using methods of GET and POST for
HTTPRequestobject.

<html>
<head>
<title>An Ajax example</title>
<script language = "javascript">
var XMLHttpRequestObject = false;
if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest();

} else if (window.ActiveXObject) {

XMLHttpRequestObject = new
ActiveXObject("Microsoft. XMLHTTP");

}

function getData(dataSource, divID){
if(XMLHttpRequestObject) {
var obj = document.getElementByld(divID);
XMLHttpRequestObject.open("GET", dataSource);

XMLHttpRequestObject.onreadystatechange = function()

{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
obj.innerHTML =
XMLHttpRequestObject.responseText;
}
}
XMLHttpRequestObject.send(null);
}
}
</script>
</head>
<body>

<H1>An Ajax example</H1>
<form>
<input type = "button" value = "Fetch the message"
onclick = "getData('data.txt', 'targetDiv')">
</form>
<div id="targetDiv">
<p>The fetched message will appear here.</p>
</div>
</body>

</html>

Program Using POST

<html>

<head>
<title>An Ajax example</title>
<script language = "javascript">
var XMLHttpRequestObject = false;
if (window. XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest();
} else if (window.ActiveXObject) {

XMLHttpRequestObject = new
ActiveXObject("Microsoft. XMLHTTP");

}
function getData(dataSource, divID, data){
if(XMLHttpRequestObject) {
var obj = document.getElementByld(divID);
XMLHttpRequestObject.open("POST", dataSource);

XMLHttpRequestObject.setRequestHeader('Content-Type',
'application/x-www-form-urlencoded');

XMLHttpRequestObject.onreadystatechange = function()

{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
obj.innerHTML =
XMLHttpRequestObject.responseText;
}
}

XMLHttpRequestObject.send("data="+data);

}
</script>
</head>

<body>

<divid=

</html>

<H1>An Ajax example</H1>
<form>
<input type = "button" value = "Fetch the first message"
onclick = "getData('dataresponder.php’,'targetDiv',1)">
<input type = "button" value = "Fetch the second message"
onclick = "getData('dataresponder.php’,'targetDiv',2)">
</form>
"targetDiv">
<p>The fetched message will appear here.</p>
</div>

</body>

6b) AJAX Principles:

Q

Minimal traffic: Ajax applications should send and receive as little information as possible to
and from the server. In short, Ajax can minimize the amount of traffic between the client
and the server. Making sure that your Ajax application doesn’t send and receive unnecessary
information adds to its robustness.

No surprises: Ajax applications typically introduce different user interaction models than
traditional web applications. As opposed to the web standard of click-and-wait, some Ajax
applications use other user interface paradigms such as drag-and-drop or double-clicking. No
matter what user interaction model you choose, be consistent so that the user knows what
to do next.

Established conventions: Don’t waste time inventing new user interaction models that your
users will be unfamiliar with. Borrow heavily from traditional web applications and desktop
applications, so there is a minimal learning curve.

No distractions: Avoid unnecessary and distracting page elements such as looping
animations and blinking page sections. Such gimmicks distract the user from what he or she
is trying to accomplish.

Accessibility: Consider who your primary and secondary users will be and how they most
likely will access your Ajax application. Don’t program yourself into a corner so that an
unexpected new audience will be completely locked out. Will your users be using older
browsers or special software? Make sure you know ahead of time and plan for it.

Avoid entire page downloads: All server communication after the initial page download
should be managed by the Ajax engine. Don’t ruin the user experience by downloading small
amounts of data in one place but reloading the entire page in others.

User first: Design the Ajax application with the users in mind before anything else. Try to make the
common use cases easy to accomplish and don’t be caught up with how you’re going to fit in
advertising or cool effects.

6c) Difference between Synchronous and asynchronous requests.

~ -
User waits till User waits till
User the r;e:ﬂ.re:r*l User the s;ﬂ'verh
- completes the - C a5 the
Interactivity P Interactivity ompletes

Client processing processing 3
L J i f

Data Data Data Data
Transmission Transmission | Transmission | Transmission

Server \—)X \—)K

System Processing System Processing

Synchronous Mode of Communication

Client

Browser User Interface

User Interactivity Display Display Display Display
Input Input Input Input
AJAX Engine

/

Client-side Processing

Data Data
ransmission Transmission
Server ‘ ’ \ ’
Server-side Server-side
Processing Processing
\- A

Asynchronous Mode of Communication

7a) Explain how to handle multiple XMLHTTPRequest objects in the same page.

<html>
<head>
<title>Sending Data to the Server</title>

<script language = "javascript'">

var XMLHttpRequestObjectl = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObjectl = new XMLHttpRequest();
} else if (window.ActiveXObject) {
XMLHttpRequestObjectl = new
ActiveXObject("Microsoft. XMLHTTP");

}

function getDatal(dataSource, divID)

{

if(XMLHttpRequestObjectl) {

var obj = document.getElementByld(divID);
XMLHttpRequestObjectl.open("GET", dataSource);
XMLHttpRequestObjectl.onreadystatechange = function()
{

if (XMLHttpRequestObjectl.readyState == 4 &&
XMLHttpRequestObjectl.status == 200) {
obj.innerHTML = XMLHttpRequestObjectl.responseText;
}

}

XMLHttpRequestObjectl.send(null);

}

}

var XMLHttpRequestObject2 = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject2 = new XMLHttpRequest();
} else if (window.ActiveXObject) {
XMLHttpRequestObject2 = new
ActiveXObject("Microsoft. XMLHTTP");

}

function getData2(dataSource, divID)

{

if(XMLHttpRequestObject2) {

var obj = document.getElementByld(divID);
XMLHttpRequestObject2.open("GET", dataSource);
XMLHttpRequestObject2.onreadystatechange = function()
{

if (XMLHttpRequestObject2.readyState == 4 &&
XMLHttpRequestObject2.status == 200) {

obj.innerHTML = XMLHttpRequestObject2.responseText;
}

}

XMLHttpRequestObject2.send(null);

}

}

</script>

</head>

<body>

<h1>Sending Data to the Server</h1>

<form>

<input type = "button" value = "Fetch message 1"

onclick = "getDatal('dataresponderl.php?data=1', 'targetDiv')">
<input type = "button" value = "Fetch message 2"

onclick = "getData2('dataresponderl.php?data=2', 'targetDiv')">
</form>

<div id="targetDiv">

<p>The fetched message will appear here.</p>

</div>

</body>

</html>

7b) Explain the pattern of predictive fetch using Ajax.

o The Predictive Fetch pattern is a relatively simple idea that can be somewnhat
difficult to implement: the Ajax application guesses what the user is going to
do next and retrieves the appropriate data.

e In a perfect world, it would be wonderful to always know what the user is
going to do and make sure that the next data is readily available when
needed. In reality, however, determining future user action is just a guessing
game depending on user’s intentions.

e Suppose user is reading an online article that is separated into three pages. It
is logical to assume that if user is interested in reading the first page, then
user also interested in reading the second and third page.

e So if the first page has been loaded for a few seconds (which can easily be
determined by using a timeout), it is probably safe to download the second
page in the background. Likewise, if the second page has been loaded for a
few seconds, it is logical to assume that the reader will continue on to the third
page.

e As this extra data is being loaded and cached on the client, the reader
continues to read and barely even notices that the next page comes up
almost instantaneously after clicking the Next Page link.

« Example: This approach is taken by many web-based e-mail systems,
including Gmail and AOL Webmail; During the writing of an e-mail, its
general e-malil is for someone whom user knows, so it's logical to assume that
the person is already in user's address book. To help out user, it may be wise
to pre-load user's address book in the background and offer suggestions.

7¢) Write a note on submission throttling.

e Submission throttling solves the issue of when to send user data to the server.
« In atraditional web site or web application, each click makes a request back
to the server so that the server is always aware of what the client is doing.

« In the Ajax model, the user interacts with the site or application without
additional requests being generated for each click.

« In atraditional web solution data send back to the server every time when
user action occurs. Thus, when the user types a letter, that letter is sent to the
server immediately. The process is then repeated for each letter typed.

e The problem with this approach is that it has the possibility to create a large
number of requests in a short amount of time, which may not only cause
problems for the server but may cause the user interface to slow down as
each request is being made and processed.

e The Submission Throttling design pattern is an alternative approach to solve
this problematic issue.

e Using Submission Throttling, you buffer the data to be sent to the server on
the client and then send the data at predetermined times.

o Submission Throttling typically begins either when the web site or
application first loads or because of a specific user action.
Then, a client-side function is called to begin the buffering of data.
Every so often, the user's status is checked to see if user is idle or not.
If the user is still active, data continues to be collected.

o When the user is idle, means not performing any action, it's time to
decide whether to send the data. This determination varies such as,

data is send only when it reaches a certain size, or data is sending
every time when the user is idle.

o After the data is sent, the application typically continues to gather data
until either a server response or some user action signals to stop the
data collection.

Example: Google Suggest feature does this brilliantly. It doesn't send a
request after each character is typed. Instead, it waits for a certain amount of
time and sends all the text currently in the text box. The delay from typing to
sending has been fine-tuned to the point that it doesn't seem like much of a
delay at all. Submission Throttling, in part, gives Google Suggest its speed.

8a) with example, explain pattern of periodic refresh and fall back pattern in Ajax.

Fallback Patterns

We pre-suppose that everything goes according to plan on the server-side:
the request is received, the necessary changes are made, and the
appropriate response is sent to the client. But what happens if there's an error
on the server? Or worse yet, what if the request never makes it to the server?
When developing Ajax applications, it is imperative that you plan ahead for
these problems and describe how your application should work if one of these
should occur.

Cancel Pending Requests

If an error occurs on the server, meaning a status of something other than 200
is returned, you need to decide what to do. Chances are that if a file is not
found (404) or an internal server error occurred (302), trying again in a few
minutes isn't going to help since both of these require an administrator to fix
the problem.

The simplest way to deal with this situation is to simply cancel all pending
requests. You can set a flag somewhere in your code that says, "don't send
any more requests."

This solution has maximum impact on the Periodic Refresh Pattern.

Try Again

Another option when dealing with errors is to silently keep trying for either a
specified amount of time or a particular number of tries.

Once again, unless the Ajax functionality is key to the user's experience, there
is no need to notify user about the failure. It is best to handle the problems
behind the scenes until it can be resolved.

In general, the Try Again pattern should be used only when the request is
intended to occur only once, as in a Multi-Stage Download.

8b) lllustrate how to implement the Ajax pattern of multistage download.

While establishing asynchronous communication, a set of patterns are
followed to make the process more efficient. One such design pattern is
Multistage Downloading.

Until now, some action of the user (like click) has triggered the process of
fetching the response. This includes a small wait period from the user’s side
until it is fetched. But in certain cases this can be annoying. The goal is to
automatically fetch data without the user having to ask for it.

Multistage Downloading is necessary when a huge amount of data needs to
be downloaded. The order in which this download occurs is very crucial. The
most relevant and light data must arrive first so that the user can get started.
The heaviest ones should probably arrive later. The advantage of this

approach is that, if the user navigates away from the page fairly quickly, then

the heavy downloads are avoided.

This process should include indicators (like progress bars) to inform the user
that more data is arriving. It should also have place holders which can accept
this arriving data easily.

9a) What is Bootstrap? Explain the Bootstrap life structure with a neat diagram
and give an example of basic HTML template using Bootstrap.

What Is Bootstrap?

Bootstrap is a free and open-source CSS framework directed at responsive, mobile-first
front-end web development. It contains CSS- and (optionally) JavaScript-based design
templates for typography, forms, buttons, navigation and other interface components.

Bootstrap is an open source product from Mark Otto and Jacob Thornton who, when it was initially
released, were both employees at Twitter. There was a need to standardize the frontend toolsets of
engineers across the company

In the earlier days of Twitter, engineers used almost any library they were familiar with to meet
front-end requirements. Inconsistencies among the individual applications made it difficult to scale
and maintain them. Bootstrap began as an answer to these challenges and quickly accelerated
during Twitter’s first Hackweek. By the end of Hackweek, we had reached a stable version that
engineers could use across the company. — Mark Otto

Since Bootstrap launched in August 2011, it has taken off in popularity. It has evolved from being an
entirely CSS-driven project to include a host of JavaScript plugins and icons that go hand in hand with
forms and buttons. At its base, it allows for responsive web design and features a robust 12-column,
940px-wide grid. One of the highlights is the build tool on Bootstrap’s website, where you can
customize the build to suit your needs, choosing which CSS and JavaScript features you want to
include on your site. All of this allows frontend web development to be catapulted forward, building
on a stable foundation of forward-looking design and development. Getting started with Bootstrap is
as simple as dropping some CSS and JavaScript into the root of your site.

Bootstrap File Structure bootstrap

bootstrap

css
bootstrap.css
bootstrap.min.css

js
bootstrap.js
bootstrap.min.js

img
glyphicons-halflings.png

glyphicons-halflings-white.png

The Bootstrap download includes three folders: css, js, and img. For simplicity, add these to the root of your
project. Minified versions of the CSS and JavaScript are also included. It is not necessary to include both the
uncompressed and the minified versions.

Basic HTML Template
Normally, a web project looks something like this:

<IDOCTYPE html>
<html>
<head>
<title>Bootstrap 101 Template</title>
</head>
<body>
<h1>Hello, world!</h1>
</body>
</html>

With Bootstrap, we include the link to the CSS stylesheet and the JavaScript:

<IDOCTYPE html>

<html>
<head>
<title>Bootstrap 101 Template</title>
<link href="css/bootstrap.min.css" rel="stylesheet">
</head>
<body>
<h1>Hello, world! </h1>
<script src="js/bootstrap.min.js"></script>
</body>
</html>

9b)With a sample code explain Fluid grid system and container layouts.

Fluid Grid System

The fluid grid system uses percentages instead of pixels for column widths. It has the
same responsive capabilities as our fixed grid system, ensuring proper proportions for
key screen resolutions and devices. You can make any row “fluid” by changing .row

to .row-fluid. The column classes stay exactly the same, making it easy to flip between
fixed and fluid grids. To offset, you operate in the same way as the fixed grid system—
add .offset* to any column to shift by your desired number of columns:

<div class="row-fluid">
<div class="spand">...</div>
<div class="span8">...</div>
<fdiv>

<div class="row-fluid">

<div class="spand">...</div>

<div class="span4 offset2">...<fdiv>
<fdiv>

Nesting a fluid grid is a little different. Since we are using percentages, each .row resets

the column count to 12. For example, if you were inside a .span8, instead of

two .span4 elements to divide the content in half, you would use two .span6 divs (see Figure
1-4). This is the case for responsive content, as we want the content to fill 100%

of the container:

<div class="row-fluid">
<div class="span8"s
<div class="row">
<div class="span6">...</div>
<div class="span6">...</div>
<[div>
</div>
</div>

Level 1 of column

Level 2 Level 2

Figure 1-4. Nesting fluid grid

Container Layouts

To add a fixed-width, centered layout to your page, simply wrap the content in <div
class="container">...</div>. If you would like to use a fluid layout but want to wrap

everything in a container, use the following: <div class="container-fluid">...</

div>. Using a fluid layout is great when you are building applications, administration
screens, and other related projects.

10a) Explain with an example, the Bootstrap button classes for different styles of Button in
Bootstrap CSS.

Buttons (lass Description
Default btn Standard gray button with gradient
btn btn-primary Provides extra visual weight and identifies the primary action in a set
of buttons (blue)

btn btn-info Used as an alternative to the default styles (light blue)

btn-success Indicates a successful or positive action (green)

btn btn-warning Indicates caution should be taken with this action (orange)

btn btn-danger Indicates a dangerous or potentially negative action (red)
btn btn-inverse Alternate dark-gray button, not tied to a semantic action or use

btn btn-link De-emphasizesabutton by makingitlook like a link while maintaining
Link button behavior

<p>
<button class="btn btn-large btn-primary"” type="button">Large button</button>
<button class="btn btn-large" type="button">Large button</button>

</p>

<p>
<button class="btn btn-primary" type="button">Default button</button>
<button class="btn" type="button">Default button</button>

</p>

<p>
<button class="btn btn-small btn-primary" type="button">Small button</button>

<button class="btn btn-small" type="button">Small button</button>

</p>

<p>
<button class="btn btn-mini btn-primary" type="button">Mini button</button>
<button class="btn btn-mini" type="button">Mini button</button>

A
~
©

v

Large button Large button

Default button Default button

Small button Small button

e

10b) Explain the following HTML concepts with Bootstrap CSS, 1) Headings 2) Emphasis classes.

Headings

All six standard heading levels have been styled in Bootstrap (see Figure 2-1), with the
<h1> at 36 pixels tall, and the <h6> down to 12 pixels (for reference, default body text is
14 pixels tall). In addition, to add an inline subheading to any of the headings, simply
add <small> around any of the elements and you will get smaller text in a lighter color.
In the case of the <h1>, the small text is 24 pixels tall, normal font weight (i.e., not bold),
and gray instead of black:

hi small {
font-size:24px;
font-weight:normal;
line-height:1;
color:#999;
}

Emphasis

In addition to using the <small> tag within headings, as discussed above, you can also
use it with body copy. When <small> is applied to body text, the font shrinks to 85% of
its original size.

Bold

To add emphasis to text, simply wrap it in a tag. This will add font-
weight:bold; to the selected text.

Italics

For italics, wrap your content in the tag. The term “em” derives from the word
“emphasis” and is meant to add stress to your text.

Emphasis Classes

Along with and , Bootstrap offers a few other classes that can be used to
provide emphasis (see Figure 2-3). These could be applied to paragraphs or spans:

<p class="muted">This content is muted</p>

<p class="text-warning">This content carries a warning class</p>

<p class="text-error">This content carries an error class</p>

<p class="text-info">This content carries an info class</p>

<p class="text-success">This content carries a success class</p>

<p>This content has emphasis, and can be bold</p>

