

1.

 $ampz = 0 = \tan(9/x)$ \Rightarrow $y/x = \tan \theta \Rightarrow y = x(\tan \theta)$ This represents a straight line in z-plane (with θ = constant) casa(1): Let r = constant Equation (2) & the becomes. $\frac{u^2}{(\gamma + \frac{1}{\gamma})^2} + \frac{v^2}{(\gamma - \frac{1}{\gamma})^2} = 1 \qquad \Rightarrow \qquad \frac{u^2}{A^2} + \frac{v^2}{B^2} = 1$ where $A = \tau + \frac{1}{r}$, $B = \tau - \frac{1}{r}$ where $A = \frac{y}{y}$, $\frac{y}{y}$ or $\frac{y}{y}$ in the w-plane with foci (plural $\}$ focus) $[\pm \sqrt{A^2-B^2}, 0] = (\pm 2, 0)$ $\left[\begin{array}{cc} \cdot & A^2 - B^2 = (x + \frac{1}{r})^2 - (r - \frac{1}{r})^2 = A \end{array}\right]$ \therefore The Circle $|z| = r$ in the z -plane maps onto an ellipse in the w-planewith foci (±2;0) $(abe(2)$; Let $O=const$ ant Equiled Combe written as $\frac{u^2}{A^2} - \frac{v^2}{B^2} = 1$ where $A = 2cosh\theta$, $B = 2sin\theta$ This repretents a hyperbola in the w-plane with foci(±2,0) Hence the straight line parting through the origin in the z-plane maps onto a hyperbola in the w-plane, with $foci (±2,0)$. \bigvee_{α} $(2, 0)$ $(-2, 0)$ 2 -plane w -plane.

 \mathcal{D} ate. Page. 6.or Cauchy's theorem-Couchy's th $f(x)$ is analytic connecter doma $\oint_C f(z)dz = 0$ for any curve entirely with in D. Proof - Consider $\frac{\oint f(x) dx}{c} = \oint (u(x,y) + iv(x,y)) (dx + i dy)$ $\frac{1}{c}$ (udx-vdy) + i 6 (udy + vdx) = $I_1 + I_2$ Given f(z) is analytic so u and v have continuous
partial desevative in D. (and f' is assumed to be continuous) Green's theorem in plane of I, and I, $\frac{Gnum's Theorem}{C} \qquad \int_M dx + Ndy = \int_R \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}\right) dx dy$ $\int_{R} \left(\frac{-\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) dx dy = 0$ $\frac{\oint (u dx - v dy)}{c}$ \therefore I_1 = $(by

 $x$$ $(\mathbf{k}_y - \mathbf{u}_y)$ $I_2 =$ $\oint_C (u\,dy + v\,dz) = \iint_R \left(\frac{2u}{2x} - \frac{\partial v}{\partial y}\right)dx\,dy = 0$ \int_{c} $\int_{c}^{1}(z)dx = \int_{1}^{1} 1\sqrt{1-z} = 0$

Page. Date. 2 Discussion of et Consider $\omega = e^{\chi} \Rightarrow u + iv = e^{\chi + iy}$ $\frac{1}{1} \Rightarrow u = e^x cos y \qquad 4 \quad v = e^x sin y$ Consider x = const. $\frac{ \text{Case} - 1 }{ \text{Case} - 1}$ $\frac{u}{v} = \frac{1}{\tan y} \Rightarrow \frac{v}{u} = \tan y$ Jean $eg^{\prime}(1) + (2)$ $u^2 + v^2 = e^{2x}$ $u^2 + v^2 = e^{2C} = \text{Cons.} = a = \text{\textsterling}^2 \text{ (say)}$ \Rightarrow Which represent a circle with centre origand radius $2\quad$ ω -plane Consider Grandaux y= C2 Case-2 $\frac{4}{3}$ = tany = tan c_2 = m (say) $= mQ$ Which sepsesents streight line passing through $4\sqrt{2}a=\frac{a^{2}}{2}a^{2}$ $x = c_1$

The second term is a constant, a constant, a constant, a constant is
$$
\frac{1}{2}
$$
 and the horizontal point $2 = 1$, $i = 1$, $i = 1$ into $w = 2$, $i = 2$. Also, find the maximum point p_0 in the interval q_0 is $\frac{az + b}{cz + d}$ be the required $z = 1$, $w = 2$ in the interval $z = \frac{az + b}{cz + d}$.

0)
$$
0.25 - 20 = 0
$$

\n 0.35
\n $0.45 - 20 = 20$
\n $0.45 - 20 = 0$
\n $0.46 - 20 = 0$
\n $0.46 - 20 = 0$
\n $0.47 - 20 = 0$
\n $0.49 - 20 = 0$
\n $0.40 - 20 = 0$
\n $0.41 -$

$$
\frac{4}{\pi} \int \frac{1}{\pi} \sinh \theta = 8.17
$$
 using the first line, $\frac{1}{\pi}$ and $\frac{1}{\pi}$ and $\frac{1}{\pi}$ and $\frac{1}{\pi}$ and $\frac{1}{\pi}$ are the first line, $\frac{1}{\pi}$ and $\frac{1}{\pi}$ are the first line, $\frac{1}{\pi}$ and $\frac{1}{\pi}$ are the first line, $\frac{1}{\pi}$ and $\frac{1}{\pi}$ and $\frac{1}{\pi}$ are the first line, $\frac{1}{\pi}$ and $\frac{1}{\pi}$ and $\frac{1}{\pi}$ are the first line, $\frac{1}{\pi}$ and $\frac{1}{\pi}$ and $\frac{1}{\pi}$ are the second line, $\frac{1}{\pi}$ and $\frac{1}{\pi}$ and $\frac{1}{\pi}$ are the second line, $\frac{1}{\pi}$ and $\frac{1}{\pi}$ and $\frac{1}{\pi}$ are the second line, $\frac{1}{\pi}$ and $\frac{1}{\pi}$ and $\frac{1}{\pi}$ are the second line, $\frac{1}{\pi}$ and $\frac{1}{\pi}$ and $\frac{1}{\pi}$ are the second line, $\frac{1}{\pi}$ and $\frac{1}{\pi}$ and $\frac{1}{\pi}$ are the second line, $\frac{1}{\pi}$ and $\frac{1}{\pi}$ and $\frac{1}{\pi}$ are the second line, $\frac{1}{\pi}$ and $\frac{1}{\pi}$ and $\frac{1}{\pi}$ are the second line, $\frac{1}{\pi}$ and $\frac{1}{\pi}$ and $\frac{1}{\pi}$ are the second line, $\frac{1}{\pi}$ and $\frac{1}{\pi}$ and $\frac{1}{\pi}$ are the second line, $\frac{1}{\pi}$ and $\frac{1}{\pi}$ and $\frac{1}{\pi}$ are the second line, $\frac{1}{\pi}$ and $\frac{1}{\pi}$ and $\frac{1}{\pi$

è

From 1 $C=-a$ = \Rightarrow $C=-1$ $\frac{1}{12} \frac{1}{12} = \frac{2}{12}$ Invariant plu are obtained by taly were $Z = \frac{|z|}{|+2}$ \Rightarrow $Z + z^d = |z|$ $Z^{2} + 221 = 0$ $Z=-2\pm\sqrt{4+9}$ = $-1\pm\sqrt{9}$ $-14\sqrt{2}$ λ $-1-\sqrt{2}$ and invariant ph.

 5 (i) y = $x^2 + 1 \Rightarrow dy$ = 2x dx and x varies from $0\sqrt{5}$ 2 $(2, 5)$ $\int (3x+y)dx + (2y-x)dy$ $(0,')$ $=\int \{ (3x+x^2+y)dx+(2x^2+z-x)zxdx \}$ $= \int_{0}^{2} (4x^{3}-x^{2}+7x+1) dx + \int_{0}^{4} x^{4}- \frac{x^{3}}{3} + \frac{7x^{2}}{2} + x$ $= 16 - \frac{8}{3} + 14 + 2 = \frac{88}{3}$ ii) Equation of the line joining (0,1) and (2,5). $\frac{y-1}{x-0} = \frac{1-5}{0-2} \Rightarrow y = 2x + 1$
 $y = 2x + 1$ $(3x+2x+1)dx+(4x+2-x)2dx$ 220 $= \int_{0}^{2} (11x + 5) dx = (11 \frac{x^{2}}{2} + 5x)^{2} = 32$.

gob: we have
$$
\int_{C} \frac{f(z)}{z-a} dz
$$

\n*Even* merged *Conbe written* $\int \frac{e^{z}}{z-(i\pi)} dz$
\n $f(z) = e^{z}$, $a = -i\pi$ This is the point $P(0, -\pi)$
\n(i)
\n(a) |z| = 8π represents a circle with *devolre* of 0 is
\nradius 8π .
\nThe point $z = a = -i\pi$ is a
\npoint $P(0, -\pi)$, lies within
\nthe circle |z| = 8π

we have (auchy's integral formula
\n
$$
\int_{C} \frac{f(z)}{z-a} dz = a\pi i f(a)
$$
\nwe have $f(z) = e^{z}$, $a = -i\pi$
\n
$$
\therefore \int_{C} \frac{e^{z}}{z+i\pi} dz = a\pi i f(-i\pi) = 2\pi i e^{-i\pi} = 2\pi i (cosh\pi - isin\pi)
$$
\n
$$
= -2\pi i \qquad (cosh\pi = -1)
$$
\n
$$
\therefore \int_{C} \frac{e^{z}}{z+i\pi} dz = 2\pi i
$$

(ii)

(c)
$$
|z-1| = |z|
$$
 is a circle with centre
\nat $z = a = 1$ if $z = a$ and $z = a = 1$ if $z = a$ and $z = a$ if $z =$

7.

 $\int \frac{\sin \pi z^2 + \cos \pi z^2}{(2-1)(2-2)} dz = \int \frac{f(z)}{(z-1)(z-2)} dz$ Now $\frac{1}{(2-1)(2-2)} = \frac{A}{(2-1)} + \frac{B}{(2-2)}$ $\Rightarrow 1 = A(z-2) + B(z-1)$ $2=1$ =) $A=-1$, $2=2$ =) $B=1$ $\frac{1}{(2-1)(2-2)} = \frac{-1}{2-1} + \frac{1}{2-2}$ $\int \frac{f(z)}{(z-a)} dz = 2\pi i \int (a)$, a is a pt lies inside Giver-121=3 is a crocle with center 0 I gradine 3 Both points 122 lier inside
 122 lier inside $f(z) = Sing + i\omega_{4T} = 1$ $Sing(z) = Sing + i\omega_{T} = 1$ $\frac{1}{c}\int \frac{\sin \pi z^2 + \cos^2 z}{(z-1)(z-2)} dz = 2\pi \hat{c} + i\hat{c} + 2\pi i \hat{c} + (2)$ $= -2\pi i (-1) + 2\pi i$ (i) $=4\pi i$