N B I P
INSTITUTE OF g

TECHNOLOGY e
Internal Assesment Test - 11
Sub:  ELECTROMAGNETIC FIELD THEORY Code: 18EE45
Date:  05/08/2022 Duration: 90 mins = Max Marks: 50 Sem: 4 Branch: EEE
Answer FIVE FULL Questions. Mention units wherever necessary.
OBE
Marks o Rt

1 (a) Define current and current density. Derive the expression for equation of [08] CO2 1.2
continuity of current.

1 (b) Determine whether or not the given potential field satisfy the Laplace equation: ~ [02] CO3 L3
V =2x%-3y? + 22
2 Obtain the boundary conditions at the interface between a Conductor and a [10] CO2 L3

Dielectric.

3 (a) Derive the expression for capacitance of a parallel plate capacitor with multiple ~ [07] CO2 L2
dielectrics.

3 (b) Determine the capacitance of a capacitor consisting of the parallel plates [03] CO2 L3
30 cm X 30 cm surface area separated by 5 mm in air.

4 (a) Starting from the Gauss’s law deduce Poisson’s and Laplace’s equations. [05] CO3 L3
4 (b) Find V atP (2, 1, 3) for the field of two infinite radial conducting planes with [05] CO3 14
V=50Vat ¢ = 10° and V=30V at ¢ = 30°.

5 Derive the expression for capacitance of coaxial cable using Laplace’s equation. [10] CO3 L3
Consider radius of inner conductor ‘a’ and outer conductor ‘b’.

6 (a) State and prove the Uniqueness theorem. [08] CO3 L2

6 (b) Given potential field V = (4p* + Bp~*)volts. Show that V2V=0, where Aand  [02] CO3 L3
B are constants.

7 State and explain Ampere’s circuital law and Prove V' X H = J. Also obtain the [10] CO3 L2
expression for Stokes’ theorem.

8 (a) Discuss the scalar and vector magnetic potentials. [07] CO3 L2
8 (b) Ata point P(x,y,z) the components of vector magnetic potential are given as [03] CO3 L3
Ay = 4x+3y+22A, = 5x+6y+32,A, = 2x +3y+ 5z

Determine B at point P.
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1.a.

Current and Current Density

The current is defined as a rate of movement of charge passing
a given reference point (or crossing a given reference plane) of
one coulomb per second. Current is symbolized by |I.

1- d4¢
At A

The current density, measured in amperes per square meter,
Is a vector flux density represented by J. It is defined as the
current per unit cross sectional area.
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2. a.

BOUNDARY CONDITIONS:

If the field exists in a region consisting of two different media, the
conditions that the field must satisfy at the interface separating the
media are called boundary conditions.

These conditions are helpful in determining the field on one side of
the boundary if the field on the other side is known.

The boundary conditions at an interface separating
e Dielectric erl and dielectric er2

e Conductor and dielectric

e Conductor and free space

To determine the boundary conditions, we need to use Maxwell’s
equations:
Work done around a closed path

is Zero, 5 N j[;E gl = 0
W-= -Q?E.J.l':.o f —ﬂ(D
L

' D ) dS — Qenc
Gauss's Law, S |H@

Also we need to decompose the electric field intensity E into ? _ Q YEn
two orthogonal components: —) = -

En V\ _
= = -

>
E=E+E, _--—- 2=t

where Et and En are respectively the tangential and normal
components of E to the interface (boundary)

A similar decomposition can be done for the electric flux density D. S
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Conductor Dielectric Boundary:

The Surface of the conductor has charges.

Also charge is zero inside the conductor and therefore,

electric field inside the conductor is zero.
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3.a.

Capacitance:

The capacitance of a two conductor system is defined as
the ratio of the magnitude of the total charge on either

conductor to the magnitude of the potential difference
between conductors.

c= R (F)
VA
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Capacitance of a parallel plate capacitor with
multiple dielectrics:

Dielectric interface parallel to the capacitor
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Dielectric interface perpendicular to the capacitor plates
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3.b.
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4.a. Poisson's and Laplace's Equations

G‘lambls law (Po‘mt {vw') /Nw[weug f{ys} e_aF_ °‘F
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Laplace's equation is a special case of Poisson's equation, where
the region is free of charges
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Apply the following boundary conditions in
the at ove e uation
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Solving the two equations give the values of constants c1 and c2

V, = ¢ Q'\O\"cllnb

N = C,@nb - ln‘)

°

-V, = CI 1" (I’I.Q

Substituting c1 and c2 in the equation of V gives the
following expression
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6.a.
Uniqueness Theorem:

If a solution to Laplace’s (or Poisson's) equation can be found that
satisfies the boundary conditions, then the solution is unique. This
is known as the uniqueness theorem

The theorem applies to any solution of
Poisson's or Laplace's equation in a given region or closed surface.

T, vtV °'"‘
The theorem is proved by contradiction {-M
We assume that there are two solutions| V1 gnd\V2 ¢f Laplace's (or =

Poisson's) equation both of which satisfythe prescCribed boundary ’ID/
conditions.
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Ampere's Circuital Law

Ampeére’s circuit law states that the line integral of H around a closed path is the
same as the net current /. enclosed by the path.
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CURL AND STOKES' THEOREM
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By Ampere's Circuital Law
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Stokes Theorem from Ampere's Circuital Law
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Proof of e
STOKES' THEOREM:




8.a.
Magnetic Scalar Potential:

We can define the magnetic scalar potential measured in
Amperes (A)

-----------------------------
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Magnetic Vector Potential:

Magnetic scalar potential can be defined only if current density is zero.

We can define magnetic vector potential A in Wb/m.

The vector magnetic potential may be used in regions where the
current density is zero or nonzero, and we will also be able to
extend it to the time-varying cases.

- = Differential form of Gauss's Law
V. B = 0 | for magnetic fields

f Vector ldentities:
A 4 —
D)
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A O D WVXVX=

V. (Vxx) =0 T
2}) V.WxA) =

Comparing the above two equations, we can write
Magnetic flux density in terms of vector potential
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The expression for magnetic vector potential can be
given as follows:

Solution of the above equation yields the
expression for Magnetic vector potential as given
below:
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