

Internal Test 2 –June 2022

CMR

Leymmetrical Component Transformation A set of three balanced realtages (phasons) $V_{a_1}V_{b_1}$ Vc in characterized by equal magnitudes and have a phase seq. (abc) called positive sequence if V to lags Va by 120° and Vc lags Vb ky 120°. V_{a} = V_{a} , V_{b} = $\alpha^{2}V_{a}$, V_{c} = αV_{a} . where α = complex number operator. $\alpha = e^{f120}$ * Convertinto current

M phase sequence is negative i.e acb, then
Va=Va, Vb=ava, Vc=aVa. Thus a set of balanced phasons is fully characterized
by its reference phasor (say Va) and its
phase sequence (tve) - $\frac{S u f}{v}$ ix $1 \longrightarrow$ to indicate the sequence. V_{a1} , V_{b1} = $\alpha^2 V_{a1}$, V_{c1} = αV_{a1} $\frac{\text{Supfii2}}{\text{Var}_1 \text{Var}_2 \text{Var}_2 \propto \text{Var}_1 \text{Var}_2 \propto \frac{1}{2} \left(\frac{1}{2} \right)}$ A set of 3 voltages (phasers) equal in magnitude
and having same phex segne is called Zero sequence, written as $\frac{V_{\alpha o} V_{\beta o} \times \frac{V_{\alpha o}}{2}}{V_{\alpha o} V_{\alpha o} \times \frac{V_{\alpha o}}{2}}$ 3

Comider, a set of three voltages (phasons) Va, which in general may be unbalanced. Acc to Fertesque's thestern, three phasons (application) the case of n phasene), expressed as the sum of the /-ve and zero sequence phason. $Va = Va_1 + Va_2 + Va_0 - 4$ $V_{b} = V_{b1} + V_{b2} + V_{b0}$ $V_{C} = V_{C1} + V_{C2} + V_{C0}$ -6) The three phason sequences (tre, -ve, 2020) are called symmetrical components of original phases Sch V_{a} , V_{b} , V_{c} Addetin of symmetrical components result $V_{a_1}V_{b_1}V_{c_2}$ V_{a} $\sqrt{b_2} = \alpha \sqrt{a_2}$ Vaa Vbez VA Vcosile Va₁ V_{C1} = OCVa, $K + V_{c2} = \alpha^2 V_{a2}$ $V_{b1z}\alpha^{2}v_{a1}$

$$
\sqrt{\rho} = A \overline{V}_{s}
$$
\n
$$
\sqrt{\rho} = A \overline{V}_{s}
$$
\n
$$
\sqrt{\rho} = \begin{bmatrix} v_{a} \\ v_{b} \\ v_{c} \end{bmatrix} = \text{Number of equivalent phase}
$$
\n
$$
V_{s} = \begin{bmatrix} V_{a1} \\ V_{a2} \\ V_{a3} \end{bmatrix} = \text{Value for } q \text{ -symmetrical components}
$$
\n
$$
A = \begin{bmatrix} 1 & 1 & 1 \\ \alpha^{2} & \alpha & 1 \\ \alpha & \alpha^{2} & 1 \end{bmatrix} = -19.
$$
\n
$$
\therefore V_{s} = A^{-1} V_{p}.
$$
\n
$$
A^{-1} = \frac{1}{2} \begin{bmatrix} 1 & \alpha & \alpha^{2} \\ 1 & \alpha^{2} & \alpha \\ 1 & 1 \end{bmatrix} = 13.
$$
\n
$$
\text{Since } V_{s} = \frac{1}{3} (V_{a} + \alpha V_{b} + \alpha^{2} V_{c}) = -14.
$$
\n
$$
\text{Since } V_{s} = \frac{1}{3} (V_{a} + \alpha V_{b} + \alpha^{2} V_{c}) = -14.
$$
\n
$$
\text{Since } V_{s} = \frac{1}{3} (V_{a} + V_{b} + V_{c}), \text{ we have}
$$

Ea Fig shows an unloaded syn gen Ea, Eb and Ec are the induced and of 30.
Since the windings are symmetrical. the induced emps are perfectly balanced $|Ea| = |Eb| = |Ec| = Vp.$ If abc phase seg.

Eq. Vr
$$
[0^{\circ}, E_{b} = V_{b} [-120^{\circ}, E_{c} = V_{p} [1120^{\circ}]
$$

\nHe seq. Components of 10014 year.

\nEq. $= \frac{1}{3} [V_{p} [0^{\circ} + V_{p} [-120^{\circ} + V_{p} / 120^{\circ}]].$

\n $= \frac{1}{3} [V_{p} [0^{\circ} + V_{p} - j0.866V_{p} - 0.5V_{p+1}]0.440^{\circ}].$

\n $= 0$

\nEq. $= \frac{1}{3} [E_{a} + K_{a}E_{b} + K_{a}E_{c}].$

\n $= V_{p} = E_{a}.$

\nEq. $= \frac{1}{3} [E_{a} + K_{a}E_{b} + K_{a}E_{c}]] = 0.$

3.

 $\frac{z}{1000}$ $\frac{z}{1000}$ $\frac{1}{2}$ S. $\frac{3}{5}$ \Rightarrow Znoon \sim Reference

 $32n$ 20
- m m $32n$

Spu=S/Sbase

Where all are pu quatities

 $5.a$

that solem but Ia, Ib, Ic => line averents I_{A} , I_{B} , I_{C} \Rightarrow phase currents $\frac{I_{a}}{I}$ As supply aystem is 152 M 3202. balanced. \searrow \vee \vee \wedge \vee \wedge 400 \wedge 0° 250 r | 3. NB = 400 (240) VC2400 120 In a debte comments system phase realting a line $T_{A} = \frac{V_{A}}{2a}$ = $\frac{400}{250}$ = 1.6 (0° A $\frac{I_{B}}{Z_{B}} = \frac{400}{15} = 26.67240$ $T_{c} = \frac{V_{c}}{V_{c}} = \frac{400}{120}$

$$
\frac{T_{c} = \frac{V_{c}}{Z_{c}} = \frac{400 \cdot 120^{6}}{20} = 20 \cdot 120^{6} A
$$

\n
$$
\therefore \text{seq. Component of } d = d = 20 \text{ (120°)}
$$

\n
$$
\frac{T_{A0} = \frac{1}{3} (T_{A} + T_{B} + T_{c})}{(T_{A} + T_{B} + T_{c})}
$$

181:
$$
\frac{1}{3} \left(I_{A} + \alpha I_{B} + \alpha^{2} I_{C} \right) = 16 \cdot 10
$$

\n192 =
$$
\frac{1}{3} \left(I_{A} + \alpha^{2} I_{B} + \alpha^{2} I_{C} \right)
$$

\n27.7 =
$$
\frac{165^{\circ} \text{ A}}{160 \text{ A}} = 7.5 \left(\frac{165^{\circ} \text{ A}}{160 \text{ A}} \right)
$$

\n29.7 =
$$
\frac{1}{3} \left(\frac{165^{\circ} \text{ A}}{160 \text{ A}} \right)
$$

\n20.7 =
$$
\frac{1}{3} \left(\frac{165^{\circ} \text{ A}}{160 \text{ A}} \right)
$$

\n20.7 =
$$
\frac{1}{3} \left(\frac{1}{3} I_{A} \right) = 27.89 \left(\frac{90^{\circ} \text{ A}}{160 \text{ A}} \right)
$$

\n21.8 =
$$
\frac{1}{3} \sqrt{3} I_{A} = \frac{13}{3} \cdot 15^{\circ} \text{ A}
$$

\n22.7 =
$$
\frac{1}{3} \sqrt{3} I_{A} = \frac{13}{3} \cdot 15^{\circ} \text{ A}
$$

5b. Zero Sequence Network

 $\mathbb{X}_1\left(\mathbb{N},-1\right)$ w, $\frac{1}{2}$ -122 $N_1(T_3)$ $H(2i)$ $(1 - 1)$ $x(y_n)$ $x_1(1-1)$ $x_1(y_2)$ c_{41} $\frac{2.3 \text{ m}}{4.3 \text{ m}} \frac{\text{M}_\text{O}}{\text{M}_\text{O}}$ $M(D-1)$ NS N $\mathcal{R}_2(TL-1)$ $x_1(T_3)$ $x_1(y_0)$ $F = [1, -2]$ $5 - 12$ $\frac{1}{2}(\tau_{L-1})$ $x_2(g_3)$ $\frac{n(n-y)}{m}$ $$31m$ Ņя F $\frac{1}{12(11-3)}$ (1) $X_0(T_0)$ m_{χ_0} 6.

7.

$$
Spu = \sqrt{a_0 I a_0} A + \sqrt{a_1 I a_1} A + \sqrt{a_2 I a_2 A}
$$

\n
$$
= (61 + j(0.05) (0.05 - j(0.02)) A + (0.9 + j(0.2) (0.9 - j(0.1)) A
$$

\n
$$
+ (0.2 + j(0.1) (0.2 - j(0.1)) A
$$

\n
$$
= 0.817 + j(0.3126 p,u)
$$

\n
$$
= 61.7 + j(0.3126) \times 100 \text{ mva}
$$

\n
$$
= 81.7 + j(31.26) \times 100 \text{ mva}
$$

\n
$$
= 81.7 + j(31.26) \times 100 \text{ mva}
$$

\n
$$
= 81.7 + j(31.26) \times 100 \text{ mva}
$$