INSTITUTE OF

USN

TECHNOLOGY

Internal Test 2 – June 2022

Sub:	Power System Analysis-1 Cod			de:	18EE62						
Date						Br	Branch: EEE		EEE		
	Answer Any FIVE FULL Questions. Assume missing Data										
						Marks	OBE				
4											RBT
	Derive the expression		U	n terms of seq	uence c	ompone	nts of		10	CO3	L2
	voltages with necessa	iry phasor dia	igram.								
	Prove that in a three p			wound alternat	or gene	rator on	ly		10	CO3	L2
	positive sequence cor										
3.	Discuss about the zero	sequence net	work of a	a transformer f	or follov	ving coni	nectio	ns.	10	CO3	L3
	a) Y-Δ, b) Y with neutra	al directly grou	ınded –∆,	, c) Δ-Δ, d) Y-Y	with bo	th the n	eutral				
	grounded through Zn.	, 0									
4									1.0	G0.4	
4.	Derive the expression o	of complex pov	wer in ter	ms of symmetr	ical com	ponents	•		10	CO3	L2
	A delta connected resist						ply of	•	5	CO3	L3
4	400V, find the symmetr	rical componer	nts of line	e currents and de	elta curr	ents.					
	T	, ,	1								
	a _ t	9	4								
	7	7									
	15 R	2 20	152								
	Te N	10	1								
	c > ~	1									
	7. 2	50.0	7:								
	6 - 46	1									
	/	1	1								
		1	REEN .								
5b	Obtain the zero seque	ence network	for follo	owing one line	diagrai	n.			5	CO3	L3

6	Obtain the positive, negative and zero sequence network for following one line	10	CO3	L3
	diagram. E T T T T T T T T T T T T			
7.	In a three phase system, the sequence quantities are: Va1=(0.9+j0.2) pu, Va2=(0.2+j0.1) pu, Va0=(0.1+j0.005)pu. Ia1=(0.9-j0.1)pu, Ia2= (0.2-j0.1)pu, Ia0=(0.05-j0.02)pu. Find three phase complex power in pu and in MVA, on a base of 100MVA. Also compute active and reactive power.	10	CO3	L3

A set of three balanced rootsges (phasons) V_a, V_b , V_c is characterized by equal magnitudes and interphase differences of [20]. The set is said to have a phase seq. (abc) called positive sequence if V_b lags V_a by I_{20} and V_c lags V_b by I_{20} and V_c lags V_b by I_{20} .

Va $I_b = X^2 V_a$, $I_b = X^2 V_a$.

Where $I_b = X^2 V_a$, $I_b = X^2 V_a$.

Where $I_b = X^2 V_a$, $I_b = X^2 V_a$.

Where $I_b = X^2 V_a$, $I_b = X^2 V_a$.

7	phase sequence is negative i.e acb, then
	phese sequence is negative i.e acb, then $Va = Va, V_b = \alpha Vd, Vc = \alpha Va.$
k	y its reference phasor (say Va) and its
	rus a set of balance I phasons is fully characterized y its reference phason (say Va) and its phase sequence (+ve/-ve).
	uffix 1 -> to indicate + ve sequence.
	/a1, Vb1= x2 Vay, Vc1 = x Va, -)
Su	Hix2 ⇒ to indicate -ve sequence. Vaz, Vb2 = XVaz, Vc2 = X²Vaz2

A	set of 3 voltages (phasons) equal in magnitude
a	set of 3 voltages (phasons) equal in magnitude and having same phase seq. is called
A	Euro sequence, written as
	Vao, Vbo=Vao, Vco=Vao 3>.

Creational addition to sym comp to obtain set of phasons $Va_1 V_b, V_c$ (unbalanced in general). $Va = Va_1 + Va_2 + Va_4 - 7$ $Vb = X^2 Va_1 + X Va_2 + Va_3 - 8$ $Vc = X Va_1 + X^2 Va_2 + Va_3 - 9$.

In matrix form $\begin{bmatrix} Va \\ Vb \\ Vc \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ X^2 X & 1 \\ X & x^2 \end{bmatrix} \begin{bmatrix} Va_1 \\ Va_2 \\ Va_3 \end{bmatrix} - 10$.

tig shows an unloaded syngen Ea, Eb and Ec are the induced emf of 30.

Since the windings are symmetrical.

The induced emfs are perfectly balanced

|Ea|=|Eb|=|Ec|=Vp.

The abc phase seq.

3.

NEIGURATION	WINDING CONNECTION P	ZERO SEQUENCE NETWORK
I ME S	The same of the sa	P
E A ELS	P	Z ₀ P 0000
41,1	Trees See Trees	⇒ Reference

4.

Ecomplex Powa in towns of symmetrical Company The total complex power flowing into a 3 of. S = P+ jQ = VaJa" + Vb7L" + Vc7c". circuit is S = to tal complex porut P => active power, 9 => Reactive power. S = P+ JO = [Va Vb Vc] [Jot] - Vac I x'd I x x'z . [A][B]] = [B]T[A]T.

Spu=S/Sbase

Where all are pu quatities

5.a

tet solm but Ia, Ib, Ic => line avoients IA, IB, Ic => phase wwenty As supply aystem is 1 .1 VA= 400 Lo 250 SZ / 3. NB 2 400 [240' Vc 2 400 /120 In a delta commerced system phase realtax sline. TA = VA = 400 [0 = 1.6 [0 A IB = VB - 400 /240' = 26.67 /240° A Ic = Vc _ 400 /120.

$$I_{c} = \frac{V_{c}}{2c} = \frac{400 \text{ [}20^{\circ}}{20} = 20 \text{ [}120^{\circ}\text{ A}$$

$$\therefore \text{ seq. component of delta convent}$$

$$I_{A0} = \frac{1}{3} \left(I_{A} + I_{B} + I_{c} \right).$$

$$= -7.25 - j \cdot 93 \text{ A}.$$

5b. Zero Sequence Network

7.

Spu = Vao Jao* + Vay Jai* + Vaz Jaz*

= (0.1+j0.05) (0.05-j0.02)* + (0.9+j0.2) (0.9-j0.1)*

+ (0.2+j0.1) (0.2-j0.1)*

= 0.817 + j0.3126 piu

Nent S = Spu XSB = (0.817 + j0.3126) X100 MVA

active power = 81.7 MW

Q = 31.26 MVAR.