USN										
-----	--	--	--	--	--	--	--	--	--	--

CMR INSTITUTE OF TECHNOLOGY

Internal Assessment Test - III

Sub:	Control Systems – A Section							Code:		18EE61	
Date:	08.07.2022	Duration:	90 mins	Max Marks:	50	Sem:	VI	Branc	ch:	EEE	
		Aı	nswer An	y FIVE FUL	L Questi	ons					
									Mar	ks OF	1
4 -							2			CO	RBT
	To determine the rise					_		-		CO ₃	L3
fe	eedback system with	n open loop	transfer f	unction $G(s)$	$=\frac{1}{s(s+1)}$	o) so tha	at the	system	L		
W	vill have a damping	ratio of 0.5.	Compare	theoretical a	ınd Practi	cal valu	ies.				
1	a unit step input.										
	SOLUTION		10 M		R(s)	→ G(s)	C(s)			
	The unity feedback sys	tem is shown in fig	1		1						
	The closed loop trans	fer function $\frac{C(s)}{R(s)}$	$= \frac{G(s)}{1 + G(s)}$		Fig 1: U	nity feedb	ack syst	em.			
	Given that, G(s) = K/s (s	s+10)									
		K	e ^{ee} saa								
	$\therefore \frac{C(s)}{R(s)} = \frac{s(s)}{1+s}$	$\frac{K}{(s+10)} = \frac{K}{s(s+10)}$	$\frac{1}{(s)+K} = \frac{1}{(s^2+1)}$)s + K							
	W 22 21 W 22				97			120			
	The value of K can be en function.	valuated by compar	ring the system	transfer function wit	th standard for	n of second	order tra	nsfer			
	C(s) _	$\frac{\omega_n^2}{2 r_{m,S} + \omega^2} = \frac{1}{s^2}$	К								
	. (0)	$-2\zeta\omega_{n}s+\omega_{n}^{2}=\overline{s^{2}}$	+10s+K								
	On comparing we get,										
	$ω_n^2 = K$ 2ζω ∴ $ω_n = \sqrt{K}$ Put ∴ 2	n = 10	E .	K=100							
	$\therefore \omega_n = \sqrt{K}$ Put $\therefore 2$	$\zeta = 0.5 \text{ and } \omega_n = \sqrt{100}$ $0.5 \times \sqrt{K} = 10$		on - 10 lau/ sec							
		√K = 10					9928	÷.			
	The value of gain, K=1	00.						. 1			
	Percentage peak ove	rshoot, $%M_p = e^{-\zeta}$	$\pi/\sqrt{1-\zeta^2} \times 100$			*		1			
	 Apprise 	= e ^{-0.5}	$5\pi/\sqrt{1-0.5^2} \times 100$	= 0.163 × 100 = 16	3.3%						
	Peak time, $t_p = \frac{\pi}{\omega_d} =$	$\frac{\pi}{\omega_n \sqrt{1-\zeta^2}} = \frac{\pi}{10\sqrt{1}}$	$\frac{\pi}{-0.5^2} = 0.363$	sec				18			
1	RESULT							8			
	The value of gain,	, T. C. 191	K = 100			. 3		i i			
	Percentage peak overs	shoot, %	$M_p = 16.3$								
	Peak time,		t _p = 0.36	3 sec.				-			
	The open-loop trans			•		•	_			CO3	L3
G	$G(s) = \frac{K}{s(sT+1)}$. By w	what factor s	hould the	amplifier g	ain K be	reduced	l, so t	hat the			
	eak overshoot of un										

	Given that, $G(s) = K/s (sT+1)$			
	$\frac{C(s)}{R(s)} = \frac{K/s (sT+1)}{1+K/s(sT+1)} = \frac{K}{s (sT+1)+K} = \frac{K}{s^2T+s+K} = \frac{K/T}{s^2+\frac{1}{s+K}}$			
	Expression for ζ and ω_n can be obtained by comparing the transfer function with the standard form of second order transfer function.			
	$\therefore \frac{C(s)}{R(s)} = \frac{\omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2} = \frac{K/T}{s^2 + \frac{1}{-}s + \frac{K}{-}}$			
	$R(s) s^2 + 2\zeta \omega_n s + \omega_n^2 s^2 + \frac{1}{T} s + \frac{K}{T}$			
	On comparing we get,			
	On comparing we get, $\omega_n^2 = K/T$ $\therefore \omega_n = \sqrt{K/T}$ $\zeta = \frac{1}{2\omega_n T} = \frac{1}{2\sqrt{\frac{K}{T}}} = \frac{1}{2\sqrt{KT}}$			
	$\zeta = \frac{1}{2\omega_n T} = \frac{1}{2\sqrt{KT}} = \frac{1}{2\sqrt{KT}}$			
	The peak overshoot, M_p is reduced by increasing the damping ratio ζ . The damping ratio ζ is increased by reducing the gain K .			
	When $M_p = 0.75$, Let $\zeta = \zeta_1$ and $K = K_1$			
	When $M_p = 0.25$, Let $\zeta = \zeta_2$ and $K = K_2$			
	Peak overshoot, $M_p = e^{-\zeta \pi / \sqrt{1-\zeta^2}}$			
	Taking natural logarithm on both sides, $ln M_p = \frac{-\zeta \pi}{\sqrt{1-r^2}}$			
	V-5			
	On squaring we get, $(\ln M_p)^2 = \frac{\zeta^2 \pi^2}{1-\zeta^2}$			
	On crossing multiplication we get, On equating, equation (1) & (2) we get,			
	$(1-\zeta^2) (\ln M_p)^2 = \zeta^2 \pi^2$ $\frac{1}{4KT} = \frac{(\ln M_p)^2}{\pi^2 + (\ln M_p)^2}$			
	$4KT \pi^2 + (ln M_p)^2$			
	1 AT (In M) ²			
	$ (\ln M_p)^2 - \zeta^2 (\ln M_p)^2 = \zeta^2 \pi^2 $ $ \frac{1}{K} = \frac{4T (\ln M_p)^2}{\pi^2 + (\ln M_p)^2} $			
	$(\ln M_p)^2 = \zeta^2 \pi^2 + \zeta^2 (\ln M_p)^2$ $K = \frac{\pi^2 + (\ln M_p)^2}{4T (\ln M_p)^2}$			
	$(ln M_p)^2 = \zeta^2 \left[\pi^2 + (ln M_p)^2 \right]$			
	$\therefore \zeta^2 = \frac{(\ln M_p)^2}{\pi^2 + (\ln M_p)^2} \qquad \dots (1)$			
	But $\zeta = \frac{1}{2\sqrt{KT}}$, $\therefore \zeta^2 = \frac{1}{4KT}$ (2)			
	2400			
	When, $K = K_1$, $M_p = 0.75$, $\therefore K_1 = \frac{\pi^2 + (ln0.75)^2}{4T (ln0.75)^2} = \frac{9.952}{0.331T} = \frac{30.06}{T}$			
	When, $K = K_2$, $M_p = 0.25$, $\therefore K_2 = \frac{\pi^2 + (ln0.25)^2}{4T (ln0.25)^2} = \frac{11.79}{7.68T} = \frac{153}{T}$			
	$\therefore \frac{K_1}{K_2} = \frac{(1/T)\ 30.06}{(1/T)\ 1.53} = 19.6$			
	$K_1 = 19.6 K_2$ (or) $K_2 = \frac{1}{19.6} K_1$			
	To reduce peak overshoot from 0.75 to 0.25, K should be reduced by 19.6 times (approximately 20 times).			
3		10	CO3	L3
J	A unity feedback system with open loop transfer function $G(s) = \frac{0.4s+1}{s(s+0.6)}$.	10		L 3
	Determine its transient response for unit step input. Evaluate the maximum			
	overshoot and the corresponding peak time, Rise time, Settling time.			

K 12 12	Given that, $G(s) = (0.4 s + 1)/s(s + 0.6)$	
	For unity feedback system, H(s) = 1.	
2	0.4 s + 1	
	$\therefore \frac{C(s)}{R(s)} = \frac{G(s)}{1 + G(s)} = \frac{\frac{s(s+0.6)}{s(s+0.6)}}{1 + \frac{0.4 + 1}{s(s+0.6)}} = \frac{0.4 + 1}{s(s+0.6) + 0.4 + 1}$	
	$\frac{1}{R(s)} = \frac{1}{1 + G(s)} = \frac{0.4 \text{ s} + 1}{1 + G(s) + 0.4 \text{ s} + 1} = \frac{1}{s(s + 0.6) + 0.4 \text{ s} + 1}$	
	$\frac{1+}{s(s+0.6)}$	
	0.4 s+1 0.4 s+1	
	$= \frac{0.4 \text{ s} + 1}{\text{s}^2 + 0.6 \text{s} + 0.4 \text{s} + 1} = \frac{0.4 \text{ s} + 1}{\text{s}^2 + \text{s} + 1}$	
	The s-domain response, $C(s) = R(s) \times \frac{0.4 \text{ s} + 1}{s^2 + s + 1}$	
-	For sten input $P(s) = 1/s$	
	For step input, R(s) = 1/s.	
	$\therefore C(s) = \frac{1}{s} \frac{0.4 s + 1}{s^2 + s + 1} = \frac{0.4 s + 1}{s(s^2 + s + 1)}$	
(4)	$s s^2 + s + 1 s(s^2 + s + 1)$	
	By partial fraction expansion C(s) can be expressed as,	
	$C(s) = \frac{0.4 s + 1}{s(s^2 + s + 1)} = \frac{A}{s} + \frac{Bs + C}{s^2 + s + 1}$	
	The residue A is solved by multiplying C(s) by s and letting $s = 0$.	
7	The residue Ata solved by muliphying C(s) by sailu letting s = 0.	
On	$\frac{0.4 \text{ s} + 1}{\text{s}(\text{s}^2 + \text{s} + 1)} = \frac{A}{\text{s}} + \frac{B\text{s} + C}{\text{s}^2 + \text{s} + 1}$	
	0.4 s +1 = A(s ² + s +1) + (Bs + C) s 0.4 s +1 = As ² + As +A + Bs ² + Cs	
On	$0.4 \text{ s} + 1 = A(s^2 + s + 1) + (Bs + C) \text{ s}$ $0.4 \text{ s} + 1 = As^2 + As + A + Bs^2 + Cs$ equating coefficients of s² we get, $0 = A + B$ $\therefore B = -A = -1$ equating coefficients of s we get, $0.4 = A + C$ $\therefore C = 0.4 - A = -0.6$	
On	$0.4 \text{ s} + 1 = A(s^2 + s + 1) + (Bs + C) \text{ s}$ $0.4 \text{ s} + 1 = As^2 + As + A + Bs^2 + Cs$ equating coefficients of s^2 we get, $0 = A + B$ $\therefore B = -A = -1$	
On On	$0.4 \text{ s} + 1 = A(s^2 + s + 1) + (Bs + C) \text{ s}$ $0.4 \text{ s} + 1 = As^2 + As + A + Bs^2 + Cs$ equating coefficients of s² we get, $0 = A + B$ $\therefore B = -A = -1$ equating coefficients of s we get, $0.4 = A + C$ $\therefore C = 0.4 - A = -0.6$ $\therefore C(s) = \frac{1}{s} + \frac{-s - 0.6}{s^2 + s + 1} = \frac{1}{s} - \frac{s + 0.6}{s^2 + s + 0.25 + 0.75} = \frac{1}{s} - \frac{s + 0.6}{\left(s^2 + 2 \times 0.5s + 0.5^2\right) + 0.75}$ transient response of $c(t) = e^{-0.5t} \left[0.1155 \sin(\sqrt{0.75} t) + \cos(\sqrt{0.75} t) \right]$	
On On The	$0.4 \text{ s} + 1 = A(s^2 + s + 1) + (Bs + C) \text{ s}$ $0.4 \text{ s} + 1 = As^2 + As + A + Bs^2 + Cs$ equating coefficients of s^2 we get, $0 = A + B$ $\therefore B = -A = -1$ equating coefficients of s we get, $0.4 = A + C$ $\therefore C = 0.4 - A = -0.6$ $\therefore C(s) = \frac{1}{s} + \frac{-s - 0.6}{s^2 + s + 1} = \frac{1}{s} - \frac{s + 0.6}{s^2 + s + 0.25 + 0.75} = \frac{1}{s} - \frac{s + 0.6}{(s^2 + 2 \times 0.5s + 0.5^2) + 0.75}$ $\text{transient response of } c(t) = e^{-0.5t} \Big[0.1155 \sin(\sqrt{0.75} \ t) + \cos(\sqrt{0.75} \ t) \Big]$ value of ζ and ω_n can be estimated by comparing the characteristic equation of the system with standard form of richaracteristic equation.	
On On The	$0.4 s + 1 = A(s^2 + s + 1) + (Bs + C) s$ $0.4 s + 1 = As^2 + As + A + Bs^2 + Cs$ equating coefficients of s^2 we get, $0 = A + B$ $\therefore B = -A = -1$ equating coefficients of s we get, $0.4 = A + C$ $\therefore C = 0.4 - A = -0.6$ $\therefore C(s) = \frac{1}{s} + \frac{-s - 0.6}{s^2 + s + 1} = \frac{1}{s} - \frac{s + 0.6}{s^2 + s + 0.25 + 0.75} = \frac{1}{s} - \frac{s + 0.6}{\left(s^2 + 2 \times 0.5s + 0.5^2\right) + 0.75}$ $\text{transient response of } c(t) = e^{-0.5t} \left[0.1155 \sin(\sqrt{0.75} t) + \cos(\sqrt{0.75} t) \right]$ value of ζ and ω_n can be estimated by comparing the characteristic equation of the system with standard form of r characteristic equation. $\therefore s^2 + 2\zeta_0 \omega_n s + \omega_n^2 = s^2 + s + 1$ 1.163	
On On The	$0.4 s + 1 = A(s^2 + s + 1) + (Bs + C) s$ $0.4 s + 1 = As^2 + As + A + Bs^2 + Cs$ equating coefficients of s^2 we get, $0 = A + B$ $\therefore B = -A = -1$ equating coefficients of s we get, $0.4 = A + C$ $\therefore C = 0.4 - A = -0.6$ $\therefore C(s) = \frac{1}{s} + \frac{-s - 0.6}{s^2 + s + 1} = \frac{1}{s} - \frac{s + 0.6}{s^2 + s + 0.25 + 0.75} = \frac{1}{s} - \frac{s + 0.6}{\left(s^2 + 2 \times 0.5s + 0.5^2\right) + 0.75}$ $\text{transient response of } c(t) = e^{-0.5t} \left[0.1155 \sin(\sqrt{0.75} t) + \cos(\sqrt{0.75} t) \right]$ value of ζ and ω_n can be estimated by comparing the characteristic equation of the system with standard form of r characteristic equation. $\therefore s^2 + 2\zeta \omega_n s + \omega_n^2 = s^2 + s + 1$ $\therefore \text{comparing we get,}$	
On On The	$0.4 s + 1 = A(s^2 + s + 1) + (Bs + C) s$ $0.4 s + 1 = As^2 + As + A + Bs^2 + Cs$ equating coefficients of s^2 we get, $0 = A + B$ $\therefore B = -A = -1$ equating coefficients of s we get, $0.4 = A + C$ $\therefore C = 0.4 - A = -0.6$ $\therefore C(s) = \frac{1}{s} + \frac{-s - 0.6}{s^2 + s + 1} = \frac{1}{s} - \frac{s + 0.6}{s^2 + s + 0.25 + 0.75} = \frac{1}{s} - \frac{s + 0.6}{\left(s^2 + 2 \times 0.5s + 0.5^2\right) + 0.75}$ $\text{transient response of } c(t) = e^{-0.5t} \left[0.1155 \sin(\sqrt{0.75} t) + \cos(\sqrt{0.75} t) \right]$ value of ζ and ω_n can be estimated by comparing the characteristic equation of the system with standard form of r characteristic equation. $\therefore s^2 + 2\zeta \omega_n s + \omega_n^2 = s^2 + s + 1$ $\therefore \text{comparing we get,}$	
On On The	$0.4 s + 1 = A(s^2 + s + 1) + (Bs + C) s$ $0.4 s + 1 = As^2 + As + A + Bs^2 + Cs$ equating coefficients of s^2 we get, $0 = A + B$ $\therefore B = -A = -1$ equating coefficients of s we get, $0.4 = A + C$ $\therefore C = 0.4 - A = -0.6$ $\therefore C(s) = \frac{1}{s} + \frac{-s - 0.6}{s^2 + s + 1} = \frac{1}{s} - \frac{s + 0.6}{s^2 + s + 0.25 + 0.75} = \frac{1}{s} - \frac{s + 0.6}{\left(s^2 + 2 \times 0.5s + 0.5^2\right) + 0.75}$ $\text{transient response of } c(t) = e^{-0.5t} \left[0.1155 \sin(\sqrt{0.75} t) + \cos(\sqrt{0.75} t) \right]$ value of ζ and ω_n can be estimated by comparing the characteristic equation of the system with standard form of r characteristic equation. $\therefore s^2 + 2\zeta_0 \omega_n s + \omega_n^2 = s^2 + s + 1$ 1.163	
On O	$0.4 s + 1 = A(s^2 + s + 1) + (Bs + C) s$ $0.4 s + 1 = As^2 + As + A + Bs^2 + Cs$ equating coefficients of s^2 we get, $0 = A + B$ $\therefore B = -A = -1$ equating coefficients of s we get, $0.4 = A + C$ $\therefore C = 0.4 - A = -0.6$ $\therefore C(s) = \frac{1}{s} + \frac{-s - 0.6}{s^2 + s + 1} = \frac{1}{s} - \frac{s + 0.6}{s^2 + s + 0.25 + 0.75} = \frac{1}{s} - \frac{s + 0.6}{\left(s^2 + 2 \times 0.5s + 0.5^2\right) + 0.75}$ $\text{transient response of } c(t) = e^{-0.5t} \left[0.1155 \sin(\sqrt{0.75} t) + \cos(\sqrt{0.75} t) \right]$ value of ζ and ω_n can be estimated by comparing the characteristic equation of the system with standard form of reharacteristic equation. $\therefore s^2 + 2\zeta\omega_n s + \omega_n^2 = s^2 + s + 1$ $\therefore \omega_n = 1 \text{rad / sec}$ $2\zeta\omega_n = 1$ $\therefore \zeta = \frac{1}{2\omega_n} = \frac{1}{2} = 0.5$	
On O	$0.4 \text{s} + 1 = \text{A}(s^2 + \text{s} + 1) + (\text{Bs} + \text{C}) \text{s}$ $0.4 \text{s} + 1 = \text{As}^2 + \text{As} + \text{A} + \text{Bs}^2 + \text{Cs}$ equating coefficients of s^2 we get, $0 = \text{A} + \text{B}$ $\therefore \text{B} = -\text{A} = -1$ equating coefficients of s we get, $0.4 = \text{A} + \text{C}$ $\therefore \text{C} = 0.4 - \text{A} = -0.6$ $\therefore \text{C}(s) = \frac{1}{s} + \frac{-s - 0.6}{s^2 + s + 1} = \frac{1}{s} - \frac{s + 0.6}{s^2 + s + 0.25 + 0.75} = \frac{1}{s} - \frac{s + 0.6}{\left(s^2 + 2 \times 0.5s + 0.5^2\right) + 0.75}$ $\text{transient response of } \text{C}(t) = e^{-0.5t} \left[0.1155 \sin(\sqrt{0.75} t) + \cos(\sqrt{0.75} t) \right]$ value of ζ and ω_n can be estimated by comparing the characteristic equation of the system with standard form of reharacteristic equation. $\therefore s^2 + 2\zeta \omega_n s + \omega_n^2 = s^2 + s + 1$ comparing we get, $\omega_n^2 = 1$ $\therefore \omega_n = 1 \text{rad/sec}$ $\frac{2\zeta \omega_n}{1 + 2\omega_n} = \frac{1}{2\omega_n} = 0.5$ $0 t = 3.628 \text{sec}$ the dimum overshoot, $M_p = e^{\sqrt{1-\zeta^2}} = e^{\frac{-0.5x}{\sqrt{1-0.5^2}}} = 0.163$ Fig 1: Response of under damped system.	
On On On Ma	$0.4 \text{s} + 1 = \text{A}(s^2 + \text{s} + 1) + (\text{Bs} + \text{C}) \text{s} \\ 0.4 \text{s} + 1 = \text{As}^2 + \text{As} + \text{A} + \text{Bs}^2 + \text{Cs} \\ \text{equating coefficients of } \text{s}^2 \text{we get}, 0.4 \text{A} + \text{B} \therefore \text{B} = \text{A} = -1 \\ \text{equating coefficients of } \text{s} \text{we get}, 0.4 = \text{A} + \text{C} \therefore \text{C} = 0.4 - \text{A} = -0.6 \\ \therefore \text{C}(\text{s}) = \frac{1}{\text{s}} + \frac{-\text{s} - 0.6}{\text{s}^2 + \text{s} + 1} = \frac{1}{\text{s}} \frac{\text{s} + 0.6}{\text{s}^2 + \text{s} + 0.25 + 0.75} = \frac{1}{\text{s}} \frac{\text{s} + 0.6}{\left(\text{s}^2 + 2 \times 0.5 \text{s} + 0.5^2\right) + 0.75} \\ \text{transient response of } \text{c}(\text{t}) = \text{e}^{-0.5\text{s}} \left[0.1155 \text{sin}(\sqrt{0.75} \text{t}) + \cos(\sqrt{0.75} \text{t}) \right] \\ \text{value of } \zeta \text{and} \omega_n \text{can be estimated by comparing the characteristic equation of the system with standard form of roharacteristic equation.} \\ \therefore \text{s}^2 + 2\zeta\omega_n \text{s} + \omega_n^2 \text{s} + \text{s} + 1 \\ \text{comparing we get}, \\ \omega_n^2 = 1 \\ \therefore \omega_n = 1 \text{rad} / \text{sec} \qquad \qquad$	
On O	$0.4 \text{s} + 1 = \text{A}(s^2 + \text{s} + 1) + (\text{Bs} + \text{C}) \text{s}$ $0.4 \text{s} + 1 = \text{As}^2 + \text{As} + \text{A} + \text{Bs}^2 + \text{Cs}$ equating coefficients of s^2 we get, $0 = \text{A} + \text{B}$ $\therefore \text{B} = -\text{A} = -1$ equating coefficients of s we get, $0.4 = \text{A} + \text{C}$ $\therefore \text{C} = 0.4 - \text{A} = -0.6$ $\therefore \text{C}(s) = \frac{1}{s} + \frac{-s - 0.6}{s^2 + s + 1} = \frac{1}{s} - \frac{s + 0.6}{s^2 + s + 0.25 + 0.75} = \frac{1}{s} - \frac{s + 0.6}{\left(s^2 + 2 \times 0.5s + 0.5^2\right) + 0.75}$ $\text{transient response of } \text{C}(t) = e^{-0.5t} \left[0.1155 \sin(\sqrt{0.75} t) + \cos(\sqrt{0.75} t) \right]$ value of ζ and ω_n can be estimated by comparing the characteristic equation of the system with standard form of reharacteristic equation. $\therefore s^2 + 2\zeta \omega_n s + \omega_n^2 = s^2 + s + 1$ comparing we get, $\omega_n^2 = 1$ $\therefore \omega_n = 1 \text{rad/sec}$ $\frac{2\zeta \omega_n}{1 + 2\omega_n} = \frac{1}{2\omega_n} = 0.5$ $0 t = 3.628 \text{sec}$ the dimum overshoot, $M_p = e^{\sqrt{1-\zeta^2}} = e^{\frac{-0.5x}{\sqrt{1-0.5^2}}} = 0.163$ Fig 1: Response of under damped system.	

	The error signal in s - domain, $E(s) = \frac{P(s)}{1 + G(s)H(s)}$
	Given that, $R(s) = \frac{3}{s} - \frac{2}{s^2} + \frac{1}{3s^3}$; $G(s) = \frac{10(s+2)}{s^2(s+1)}$; $H(s) = 1$
	$ \therefore E(s) = \frac{\frac{3}{s} - \frac{2}{s^2} + \frac{1}{3s^3}}{1 + \frac{10(s+2)}{s^2(s+1)}} = \frac{\frac{3}{s} - \frac{2}{s^2} + \frac{1}{3s^3}}{\frac{s^2(s+1) + 10(s+2)}{s^2(s+1)}} $
	$=\frac{3}{s}\left[\frac{s^2(s+1)}{s^2(s+1)+10(s+2)}\right]-\frac{2}{s^2}\left[\frac{s^2(s+1)}{s^2(s+1)+10(s+2)}\right]+\frac{1}{3s^3}\left[\frac{s^2(s+1)}{s^2(s+1)+10(s+2)}\right]$
	The steady state error e _{ss} can be obtained from final value theorem.
	Steady state error, $e_{ss} = \underset{t \to \infty}{\text{Lt}} e(t) = \underset{s \to 0}{\text{Lt}} s E(s)$
	$\therefore e_{ss} = \underset{s \to 0}{Lt} \ s \left\{ \frac{3}{s} \left[\frac{s^2(s+1)}{s^2(s+1) + 10(s+2)} \right] - \frac{2}{s^2} \left[\frac{s^2(s+1)}{s^2(s+1) + 10(s+2)} \right] + \frac{1}{3s^3} \left[\frac{s^2(s+1)}{s^2(s+1) + 10(s+2)} \right] \right\}$
	$= \underset{s \to 0}{\text{Lt}} \left\{ \frac{3s^2(s+1)}{s^2(s+1) + 10(s+2)} - \frac{2s(s+1)}{s^2(s+1) + 10(s+2)} + \frac{(s+1)}{3s^2(s+1) + 30(s+2)} \right\} = 0 - 0 + \frac{1}{60}$
5	Use the Routh-Hurwitz stability criterion to determine the location of roots on 10 CO3 L3
	the S-plane and hence the stability of the system represented by the
	characteristic polynomial
	$5s^6 + 9s^5 + 9s^4 + 4s^3 + 20s^2 + 36s + 36 = 0.$
	53 1 73 1 73 1 73 1 203 1 303 1 30 = 0.
	s ⁷ : 1 9 4 36Row-1
	s ⁶ : 5 9 20 36Row-2
	Divide s ⁶ row by 5 to simplify the computations.
	s ⁷ : 1 9 4 36Row-1
	s ⁶ : 1 1.8 4 7.2 Row-2
	s ⁵ : 1 0 4 Row-3
	s ⁴ : 1 0 4 Row-4
	s³ : 0 0Row-5
	The row of all zeros indicate the existence of even polynomial,
	which is also the auxiliary polynomial. The auxiliary polynomial is, s ⁴ + 4 = 0. Divide the characteristic equation by auxiliary equation to get the quotient polynomial.
	The characteristic equation can be expressed as a product of
	quotient polynomial and auxiliary equation.

below.

There is no sign change in the elements of first column of routh an quotient polynomial are lying on the left half of s-plane.

To determine the stability, the roots of auxiliary polynomial should be

The auxiliary polynomial is, $s^4 + 4 = 0$.

Put, $s^2 = x$ in the auxiliary equation, $\therefore s^4 + 4 = x^2 + 4 = 0$

The auxiliary polynomial is, $s^4 + 4 = 0$.

Put, $s^2 = x$ in the auxiliary equation, $\therefore s^4 + 4 = x^2 + 4 = 0$

$$\therefore x^{2} = -4 \Rightarrow x = \pm \sqrt{-4} = \pm j2 = 2 \angle 90^{\circ} \text{ or } 2 \angle - 90^{\circ}$$
But, $s = \pm \sqrt{x} = \pm \sqrt{2} \angle 90^{\circ}$ or $\pm \sqrt{2} \angle - 90^{\circ} = \pm \sqrt{2} \angle 90^{\circ}/2$ or $\pm \sqrt{2} \angle - 90^{\circ}/2$

$$= \pm \sqrt{2} \angle 45^{\circ} \text{ or } \pm \sqrt{2} \angle - 45 = \pm (1 + j1) \text{ or } \pm (1 - j1)$$

The roots of auxiliary equation are complex and has quadrantal symmetry. Two roots of auxiliary equation are lying on the right half of s-plane and the other two on the left half of s-plane.

The roots of characteristic equation are given by roots of quotient polynomial and auxiliary polynomial. Hence we can conclude that two roots of characteristic equation are lying on the right half of s-plane and so the system is unstable. The remaining five roots are lying on the left half of s-plane.

The open loop transfer function of a unity feedback system is given by G(s) =. Determine the value of \mathbf{K} and \mathbf{a} so that the system oscillates at a $s^3 + as^2 + 2s + 1$ frequency of 3rad/sec.

CO₃

L3

The closed loop transfer function
$$\begin{cases} \frac{C(s)}{R(s)} = \frac{G(s)}{1+G(s)} = \frac{\frac{K(s+1)}{s^3 + as^2 + 2s + 1}}{1+\frac{K(s+1)}{s^3 + as^2 + 2s + 1}} = \frac{K(s+1)}{s^3 + as^2 + 2s + 1 + K(s+1)}$$

The characteristic equation is, $s^3 + as^2 + 2s + 1 + K(s+1) = 0$.

$$s^3 + as^2 + 2s + 1 + Ks + K = 0$$
 \Rightarrow $s^3 + as^2 + (2 + K)s + 1 + K = 0$

The routh array of characteristic polynomial is constructed as shown below. The maximum power of s is odd, hence the first row of routh array is formed using coefficients of odd powers of s and the second row of routh array is formed using coefficients of even powers of s.

If the elements of s1 row are all zeros then there exists an even polynomial (or auxiliary polynomial). If the roots of the auxiliary polynomial are purely imaginary then the roots are lying on imaginary axis and the system oscillates. The frequency of oscillation is the root of auxiliary polynomial.

Routh array $s^{3}: 1 2+K$ $s^{2}: a 1+K$ $s^{1}: \frac{a(2+K)-(1+K)}{a}$ $s^{0}: 1+K$ From s^{2} row, the auxiliary polynomial is, $as^{2}+(1+K)=0 \Rightarrow as^{2}=-(1+K) \Rightarrow s=\pm j\sqrt{\frac{1+K}{a}}$ Given that, $s=\pm j2$, $\therefore \sqrt{\frac{1+K}{a}}=2 \Rightarrow \frac{1+K}{a}=4 \Rightarrow K=4a-1$ $From s^{1} row, \frac{a(2+K)-(1+K)}{a}=0 \Rightarrow a(2+K)-(1+K)=0 \Rightarrow 2a+Ka-1-K=0 \therefore 2a-1+K(a-1)=0 Put, K=4a-1 \therefore 2a-1+(4a-1)(a-1)=0 \Rightarrow 2a-1+4a^{2}-4a-a+1=0 \Rightarrow 4a^{2}-3a=0 (or) a (4a-3)=0 Since a\neq 0, 4a-3=0, a=3/4 When a=(3/4), K=4a-1=4\times(3/4)-1=2 RESULT When the system oscillates at a frequency of 2 rad/sec, K=2 and a=3/4.$			
The characteristic equation of a feedback control system is given by $s^4 + 20s^3 + 15s^2 + 2s + K = 0$. (a) Determine the range of values of K for the system to be stable. (b) Can the system be marginally stable? If so, find the required value of K and the frequency of sustained oscillations. The maximum power of s in the characteristic polynomial is odd, hence form the first row of routh array using coefficients of odd powers of s and second row of routh array using coefficients of even powers of s. $s^3 : 1 = 9 - K$ $s^2 : 5 = K$ $s^3 : 1 = 9 - 1.2K$ $s^6 : K$ From s^1 row, for stability of the system, (9-1.2K)>0 If $(9-1.2K)>0$ then $1.2K<9$; $K<\frac{9}{12}=7.5$ From s^0 row, for stability of the system, K>0 Finally we can conclude that for stability of the system K should be in the range of $0 < K < 7.5$ RESULT For stability of the system K should be in the range of, $0 < K < 7.5$.	5	CO3	L3
Use the Routh-Hurwitz stability criterion to determine the location of roots on the s-plane and hence the stability of the system represented by the characteristic polynomial $s^6 + 2s^5 + s^4 + 2s^3 + 3s^2 + 4s + 5 = 0$.	5	CO3	L3

CI CCI HOD