

Internal Test 3 –July 2022

Stability Limits: Steady state stability limit (9556), refers to
The oneximum of low of power possible
Through a particular point in the system without
It loss of stability / where a small a Transient stability Limit (TSL) suburs to
to the messimum flow of pass possible
through a particular point in the system
withot the loss of stability occurs in the
and sudden distrubance occurs in the
system TSL is lower t $120ssib!$ system Sability Limits: Steady state stability librit (SSSC), refers to
the orientation of flow of power possible
the loss of stability where a small a without
the loss of stability where occurs in the system Transient stability Limit (TSL) enforce to
to the meximum flow of passe bossible
through a particular point in the system
with first the loss of stability when a day $syskm$ 4. Derive equal area criteria, and find its application with respect to following: $10 \mid \text{CO5} \mid \text{L2}$ sudden change in input. stability analysis can be casou'ed out by Equal Asua Gilowon (EAC). => If provides qualitative analysis
of stability of syn m/c. without

I suring equation Comider Europe equation of a single $M\frac{d^2S}{dt^2}$ = $\int a \cdot$ Multiplying both mides of the equation by $\frac{g}{M}$ $\frac{d\mathcal{E}}{dr}$, and r $2\frac{d6}{dt} \times \frac{d^26}{dt^2} = \frac{2}{M} \int a \frac{dS}{dt}$ $\frac{d}{dr}(x^2) = 2r \frac{dr}{dt}$. or $\frac{d}{dt} \left(\frac{dS}{dr}\right)^2 = \frac{2}{M}$ $a \frac{dS}{dt}$ $\left(\frac{d\mathcal{E}}{dt}\right)^{\frac{q}{2}} \approx \frac{2}{M} \int_{S_2}^{S} \int_{d\frac{d\mathcal{E}}{dt}}^{d} d\mathcal{F}$ $=\frac{2}{M}\int_{S_0}^{S} \frac{1}{\sqrt{2\pi}}$ $\frac{d\hat{\delta}}{dt} = \sqrt{\frac{2}{M} \int_{\delta_{\theta}}^{\delta} f_{\alpha} ds}$ $\frac{ds}{dt} = 0$ $\int \frac{1}{M} \int_{\delta_0}^{\delta} f_{a,1} ds = 0$ $\int_{c}^{b} \rho_{\alpha} dS = 0$

Applications of Equal Area Criticism Silvation of EAC of stability for Assumption. 17.1 and syn m/c sunstance are negles
27 Rotor speed of syn m/c is control.
37. Nech = 1 p to m/c control.
67. Effect of damper winding original. a) Sudden Change in IP $\frac{c_1}{\sqrt{P_{e^2}}}\sqrt{\frac{1}{2}\pi\sinh\theta}\cos\theta/\cos\theta$ het us commider sudden increase in mechanical: P_e and the set of the P_{s} δ^0 δ_2 180° δ $\mathbf{Fig. 6.21} \sim \mathbb{E}[\mathcal{O}(\mathcal{O}(\mathcal{O}(\mathcal{O}(\mathcal{O}(\mathcal{O}(\mathcal{O}(\mathcal{O}(\mathcal{O}(\mathcal{O}(\mathcal{O}(\mathcal{O}(\mathcal{O}))))))))))}$

Curve Pe-8 shows the power angle-curve. with the system operating at print $\frac{a}{\sqrt{a}}$ Convies ponding to $\frac{1}{\pi}$ $\left| \frac{1}{f} \right|$ f_s . Let mechanical Ip be Ps. le Accepterating Power Pa = Ps/-Pe, causes $\delta \uparrow \rightarrow$ electric power transfer \uparrow , $Pa\downarrow$ till a point $\frac{b}{2}$ at which $Pa=0$. But rotor angle 8 g continue to 1 because of inertia of rotor. and Pa becomes (-ve) cauning to roton decelorate. At point \leq where area A_1 = area A_2 $\int_{S_n}^{\delta_2} \int_{S_n}^{R_n} ds = 0$ => $\frac{dS}{dt} = 0$ (refer vel.). and then starts to kecome negative caring to continued negotive Pa Roton angle reaches the mas value s_2 and

Page No: then starts to decrease. $A_{12} = \int_{\delta_0}^{\delta_1} (P_s^1 - \rho_e) d\delta$ $A_{2,2}$ $\int_{s}^{s_2} (P_{e} - P_{s}) dS$ Find (ϵ_2) man such that $A_1 = A_2$. As Ps in increased a limiting condition
is finally reached when area As above the
cquato I the entire area Az above the Underthis condition δ_2 acquires the max. Value Som. $\delta_2 = 5m = 180 - 81$ => system i's outloally stable It is increaser further A. CA 5a Discuss about how to improve transient stability. 5 CO5 L2

the generator ferminals. Load componsat
for at least some of the reduction of
acc. of the machine. <u>Load componsation</u> c) Fast valume on bypass valuing! => the
stability of a unit of is improved
by decreasing the mechanical = /p power stability of a vient of a
sy decreasing the mechanical afend occurs
control scheme detects the diff bedy
control scheme detects the desiring of ontrol scheme detects the diff betty
onech I p and suduced electrical of p
of the generator position the closing of
I p. Full load quiction technique! $\begin{pmatrix} a \end{pmatrix}$ Ustory superconductions fault Crouent $\overline{(e)}$ $\begin{picture}(100,10) \put(0,0){\vector(1,0){10}} \put(10,0){\vector(1,0){10}} \put(10,0){\vector($ 5b Write short notes on series type of fault. 5 CO4 L2

Service types of Faults $\frac{I_{\alpha_1}}{I_{\alpha_2}}(Va_{\alpha_3})_1$ $\frac{I_{\alpha_1}}{I_{\alpha_3}}$ $\frac{I_{\alpha_4}}{I_{\alpha_5}}$ $\frac{I_{\alpha_6}}{I_{\alpha_7}}$ $\frac{I_{\alpha_8}}{I_{\alpha_8}}$ F $PSN F1$ NSN. $Jac\leftarrow \left(\vee ad\right)_2 \uparrow \leftarrow \exists a$ ZSN One conductor open fault $T_{\alpha} \longrightarrow \begin{array}{c}\nF' \cdot F \\
\uparrow F \\
T_{\beta} \longrightarrow \begin{array}{c}\nF' \cdot F \\
\downarrow F \\
F \end{array}\n\end{array}$ Terminal Condition I_{a} $\frac{1}{2}$ V_{bb} = 0 $Vcc' = 0$. Symonetrical Component Melation. $\left(\frac{1}{\sqrt{2a}}\right)$ $1 - \frac{1}{3} \left(\frac{1}{2}a + a \frac{1}{2}b + a^2 \frac{1}{2}c^2\right)$
= $\frac{1}{3} \left(\frac{1}{2}a + b + b\right) = \frac{1}{3} \frac{1}{2}a^2$ (-ve) seg. voltage is. $\left(\frac{V_{aa'}}{V_{aa'}}\right)_2 = \frac{1}{3} \left(\frac{V_{aa'} + \alpha^2 V_{bb' + \alpha'} V_{cc'}}{V_{aa'}}\right)$ $= \frac{1}{2}$ $\sqrt{a}a^{\prime}$ $\left(\sqrt[n]{aa'}\right)_{0} = \frac{1}{3} \left(\sqrt[n]{aa'} + \sqrt[n]{b} \cdot \sqrt[n]{1 - \frac{a \cdot 1}{3}} \right) a \cdot \frac{1}{3} \sqrt[n]{aa'}.$ $\frac{10}{40}$ $\frac{1}{40}$ $\frac{1}{40}$ Similar to $\frac{16}{\sqrt{10}} \frac{160}{\sqrt{10}} \frac{1}{\sqrt{10}} \frac{1}{\sqrt{10}} \frac{1}{\sqrt{10}} \frac{1}{\sqrt{10}} \frac{1}{\sqrt{10}} \frac{1}{\sqrt{10}} \frac{1}{\sqrt{10}} \frac{1}{\sqrt{10}}$ $PSN^ \sqrt{N_{SM}}$ $(\overline{V_{\alpha\alpha'}})$ $2sA(\sqrt{c})$

 $\overset{M}{\odot}$ base power for entire system de Base Values Let the base of Base ve Hope of gen = 11 kv

n n cf T.L = 11 x $\frac{34.5}{11.5}$ = 33 kv

n n cf moten = $33 \times \frac{69}{34.5}$ = 6.6 kv Seguence Reachances of ourselves
 $x_1 = 0.2 \times \frac{20}{20} \times \frac{11^2}{11^2} = \frac{0.2 \times 10^2}{20}$
 $x_2 = 0.1 \times \frac{20}{20} \times \frac{11^2}{11^2} = 0.1 \text{ p.u.}$
 $x_0 = 0.1 \times \frac{20}{20} \times \frac{11^2}{11^2} = 0.1 \text{ p.u.}$ Sequence greatures of Sequence running (NV) B, new y (KV) B, old
 $X_1 = X_2 = X_0$ = $X = \frac{(Nv_B)^2}{(mv_B)^2}$ (KV) B, new -
 $= 0.1 \times \frac{20}{18} \times \frac{11.5^2}{11^2} = 0.12 \text{ p.u.}$ Sequence seachance of T.L
 $X_1 = X_2 = X(A) \times \frac{[Nv]_0}{(kv)^2}$
 $= 505 \times \frac{20}{33^2} = 0.092 \text{ p.u.}$
 $X_0 = 10 \times \frac{20}{33^2} = 0.184 \text{ p.u.}$ Sequence exactance $\frac{12}{x_1} = \frac{6.9^2}{6.6^2} = 0.146 \rho.4$ Sequence secaraces of Motors
 $X_1 = 0.2 \times \frac{20}{15} \times \frac{6.9^2}{6.6^2}$. = 0.29 p.u.
 $X_2 = X_0 = 0.1 \times \frac{20}{15} \times \frac{(6.9)^2}{(6.6)^2} = 0.145$ p.u. $\mathbb{S}^{\mathbb{Z}}$ and $\mathbb{R}^{\mathbb{Z}}$

Positive Sequence Network $\begin{picture}(180,10) \put(0,0){\line(1,0){10}} \put(10,0){\line(1,0){10}} \put(10,0){\line($ $j_{0.2} \xi$ $j_{0.12}$ $j_{0.046}$ E_3 ζ $\overline{\mathfrak{l}_\theta}$ $\overline{\mathcal{T}}$ To find the voltage at the fault point (VM) The aurent draw- by the motor.
Tom = $\frac{10\times10^{6}}{\sqrt{3}\times6\times10^{3}\times0.8}$
= 12028 $\sqrt{28.6\%}$ ĘJ 20×10^{6} Base current in the motor $\left(\overline{1}_m\right)_{\beta_2} \frac{20\times10^{-6}}{\sqrt{3}\times6\cdot6\times10^{-3}}$ $rac{S}{L}$ \mathbb{I}_{m} $\Big|_{\beta \cdot \alpha} = \frac{1202.8}{1749.55} \Big(\frac{66.87}{17.49 \cdot 17.49.55} \times 17.49.55 \text{ A}$ $\pmb{\ell}$ = 0.687 -36.87 $\gamma\omega$. V_{th}^{m} in pu = $\frac{C}{6 \cdot 6}$ = 0.909 $\left(\frac{0}{6}\right)^{\circ}$ p. u. . Voltage at the fault point V_{Th} = V_{m} + T_{m} (\vec{f} 0.68 + \vec{f} 0.68 + (36.87×0.192)
= 6.909 $\sqrt{0}$ + 0.687 $\sqrt{0.887 \times 0.192}$ $= 0.994 \pm 6.1^{\circ}$ pu. **Scanned with CamScanner** To find Thevenin's Impedance 2 Th at point F $(0.2 + 0.12 + 0.046)$ II $(0.044 + 0.146 +$ Z_{ITW} $0.29)$ = $\int_{0}^{1} 0.208 \rho \cdot u$ Equivalent PSN ξ $\overline{\theta}$ 208 ; 0.994660 Negative Sequence Network (NSN).
10.12 m F $\begin{array}{c}\n\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} \\
0 & \frac{1}{2} \\
0 & \frac{1}{2}\n\end{array}$ m_{\star} m $\sum_{i=1}^{n}$ $j_{0.046}$ $\overline{Z_{2}}\pi_{1} = \int_{0}^{1} (0.1 + 0.12 + 0.046) \mu$ $0.04 + 0.446$ $j_{6,14,6}$ $25N$ $\sum_{\begin{subarray}{c}\{a,b\}\{a,b\}\end{subarray}} \sum_{\begin{subarray}{c}\{a,b\}\{b,b\}\end{subarray}} \sum_{\begin{subarray}{c}\{b,b\}\end{subarray}}$ ∞ 330.145 $207h = \int_{1}^{1} 0^{1172}$

Interconnection of sequence networks $\mathcal{C}_{\mathfrak{f}}$ of \mathfrak{p}_2 \mathbf{r} $\overline{\mathbb{L}}$ $\mathbb{T}_{\alpha_4} \subset \mathbb{T}_{\alpha_4} \subset \mathbb{T}_{\alpha_{\cdot 0}}$ $0.994 / 6.10$ δ (0.208 + joint + joint 2) $f \n{\text{mult}}$ curvention $P: u = 3I_{a,c}$.
 $f \n{\text{mult}}$ curvention $P: u = 3I_{a,c}$.
 $= 3 \times 1.88$
 $= 3 \times 1.88$
 $\left(\frac{\pi}{3}\right)_{P} u \times \left(\frac{\pi}{3}L\right)_{P}$
 $= 5.64 \times 20 \times 10^{-6}$ $\mathbb{P}^3 \cap \mathbb{P}^2$ $1 - 83.9$ È $85.641.4$ $\sqrt{3}x33x103$ $= 1979.49A$ 7. A three phase generator with an open circuit voltage of 400V is subjected to an 10 | CO3 | L3 LG fault through a fault impedance of j2Ω. Determine the fault current if Z1=j4Ω, Z2=j2Ω, Z0=j1Ω \mathcal{I}_{α} = \mathcal{I}_{α} = \mathcal{I}_{α} = $21 - j^{4n}$ Ea $\frac{5}{4}$ $Z_2 = \dot{z}^2$ \Rightarrow $21+22+20+32$ Earca $400/\sqrt{3}$ \int $\frac{375}{962}$ $T_{f} = 3 |$ Tao $= 530895$

__