Course Title: Introduction to Int	Introduction to Internet of Things (IOT)					
Course Code:	22ETC15H/25H	CIE Marks	50			
Course Type (Theory/Practical	Theory	SEE Marks	50			
/Integrated)		Total Marks	100			
Teaching Hours/Week (L:T:P: S)	3-0-0-0	Exam Hours	03			
Total Hours of Pedagogy	40 hours	Credits	03			

Course objectives

- Understand about the fundamentals of Internet of Things and its building blocks along with their characteristics.
- Understand the recent application domains of IoT in everyday life.
- Gain insights about the current trends of Associated IOT technologoes and IOT Anlaytics.

Teaching-Learning Process

These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes.

- 1. Lecturer method (L) need not to be only a traditional lecture method, but alternative effective teaching methods could be adopted to attain the outcomes.
- 2. Use of Video/Animation to explain functioning of various concepts.
- 3. Encourage collaborative (Group Learning) Learning in the class.
- 4. Ask at least three HOT (Higher order Thinking) questions in the class, which promotes critical thinking.
- 5. Adopt Problem Based Learning (PBL), which fosters students' Analytical skills, develop design thinking skills such as the ability to design, evaluate, generalize, and analyze information rather than simply recall it.
- 6. Introduce Topics in manifold representations.
- 7. Show the different ways to solve the same problem with different circuits/logic and encourage the students to come up with their own creative ways to solve them.
- 8. Discuss how every concept can be applied to the real world and when that's possible, it helps improve the students' understanding
- 9. Use any of these methods: Chalk and board, Active Learning, Case Studies

Module-1 (8 hours of pedagogy)

Basics of Networking: Introduction, Network Types, Layered network models

Emergence of IoT: Introduction, Evolution of IoT, Enabling IoT and the Complex Interdependence of Technologies, IoT Networking Components

Textbook 1: Chapter 1- 1.1 to 1.3 Chapter 4 - 4.1 to 4.4

Module-2 (8 hours of pedagogy)

IoT Sensing and Actuation: Introduction, Sensors, Sensor Characteristics, Sensorial Deviations, Sensing Types, Sensing Considerations, Actuators, Actuator Types, Actuator Characteristics.

Textbook 1: Chapter 5 - 5.1 to 5.9

Module-3 (8 hours of pedagogy)

IoT Processing Topologies and Types: Data Format, Importance of Processing in IoT, Processing Topologies, IoT Device Design and Selection Considerations, Processing Offloading.

Textbook 1: Chapter 6 - 6.1 to 6.5

Module-4 (8 ours of pedagogy)

ASSOCIATED IOT TECHNOLOGIES

Cloud Computing: Introduction, Virtualization, Cloud Models, Service-Level Agreement in Cloud Computing, Cloud Implementation, Sensor-Cloud: Sensors-as-a-Service.

IOT CASE STUDIES

Agricultural IoT - Introduction and Case Studies

Textbook 1: Chapter 10–10.1 to 10.6; Chapter 12-12.1-12.2

Module-5 (8 hours of pedagogy)

IOT CASE STUDIES AND FUTURE TRENDS

Vehicular IoT – Introduction

Healthcare IoT - Introduction, Case Studies

IoT Analytics – Introduction

Textbook 1: Chapter 13-13.1; Chapter 14-14.1-14.2; Chapter 17-17.1

Course outcome (Course Skill Set)

At the end of the course the student will be able to:

At the end of the course the student will be able to:				
CO1	Describe the evolution of IoT, IoT networking components, and addressing strategies in IoT.			
CO2	Classify various sensing devices and actuator types.			
CO3	Demonstrate the processing in IoT.			
CO4	Explain Associated IOT Technologoes			
CO5	Illustrate architecture of IOT Applications			

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50). The minimum passing mark for the SEE is 35% of the maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation(CIE):

Three Tests each of 20 Marks;

- 1st, 2nd, and 3rd tests shall be conducted after completion of the syllabus of 30-35%, 70-75%, and 90-100% of the course/s respectively.
- Assignments/Seminar/quiz/group discussion /field survey & report presentation/ course project/Skill development activities, suitably planned to attain the COs and POs for a total of 40 Marks.

If the nature of the courses requires assignments/Seminars/Quizzes/group discussion two evaluation components shall be conducted. If course project/field survey/skill development activities etc then the evaluation method shall be one.

Total CIE marks (out of 100 marks) shall be scaled down to 50 marks

Semester End Examination(SEE):

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the subject (duration 03 hours)

- The question paper shall be set for 100 marks. The medium of the question paper shall be English). The duration of SEE is 03 hours.
- The question paper will have 10 questions. Two questions per module. Each question is set for 20 marks. The students have to answer 5 full questions, selecting one full question from each module. The student has to answer for 100 marks and marks scored out of 100 shall be proportionally reduced to 50 marks.
- There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions). **should have a mix of tonics** under that module

Suggested Learning Resources:

Books (Title of the Book/Name of the author/Name of the publisher/Edition and Year)

1. Sudip Misra, Anandarup Mukherjee, Arijit Roy, "Introduction to IoT", Cambridge University Press 2021.

Reference:

- 2. S. Misra, C. Roy, and A. Mukherjee, 2020. Introduction to Industrial Internet of Things and Industry 4.0. CRC Press.
- 3. Vijay Madisetti and Arshdeep Bahga, "Internet of Things (A Hands-on-Approach)",1st Edition, VPT, 2014.
- 4. Francis daCosta, "Rethinking the Internet of Things: A Scalable Approach to Connecting Everything", 1st Edition, Apress Publications, 2013.

Web links and Video Lectures (e-Resources):

CO5

Level 3- Highly Mapped,

• 1. htt	ps://nptel.ac.ii	n/noc/courses	/noc19/SEM1	/noc19-cs31/					
Activity Base	d Learning (S	uggested Acti	vities in Class)/ Practical B	ased learning				
 Demo 	onstare a senso	r based applic	ation						
•									
COs and POs	Mapping (Ind	ividual teach	er has to fill u	p)				_	
COs	POs								
	1	2	3	4	5	6	7		
CO1									
CO2									
CO3									
CO4								ĺ	

Level 1-Low Mapped, Level 0- Not Mapped

Level 2-Moderately Mapped,

Δ