

Scheme of Evaluation

Internal Assessment Test 2 – June 2022

Sub: Programming in Java Code: 18CS653

Date: 10/6/2022 Duration: 90mins

Max

Marks: 50
Sem: VI Branch: EEE/MECH

Note: Answer Any five full questions.

Questi

on #

Description Marks

Distribution

Max

Marks

1

a)
With suitable example, explain the following jump

statements

i) continue ii) break

continue: syntax and example

break: syntax and example

3M

3M

6M

10M

1

b) Explain the different access specifiers in Java.

Public

Private

Default

Protected

1M*4 4M

2

a)
Differentiate between method overloading and

overriding with suitable example.

Any four differences with example

1M*4 4M

10M

2

b) Create a java class called Student with following details as

variable (USN, Name, Branch, Phone number). Write a

Java program to create a student object and print USN,

Name, Branch, Phone number with suitable message.

Class definition

Instance variable initialization

Creating objects

Display information

1M

2M

1M

2M

6M

3
a) What is super? Explain with suitable example

Super usage

6M 10M

Example 1M

5M

3

b) What is a class? How an object is created for the class?

Class definition

Object creation

1M

3M

4M

4

a) Explain the Garbage Collection in Java.

Garbge collection usage

Its working

2M

3M
5M

10M

4
b)

Explain the following i)final ii) finalize()

Final – syntax and example

Finalize()- syntax and example

3M

3M
5M

5

a)
What are the salient features of constructors? Explain

different types of constructors in Java with suitable

example.

Features of constructors

Default constructor

Parameterized constructor

4M

3M

3M

10M 10M

6

a)
List the various types of inheritance in Java and explain

with suitable example

Single inheritance

Multilevel inheritance

Hierarchical inheritance

Multiple inheritance

Hybrid inheritance

2M*5 10M 10M

Q.1 With suitable example, explain the following jump statements

i) continue ii) break

break : breaks the loop

public class Main {

 public static void main(String[] args) {

 for (int i = 0; i < 10; i++) {

 if (i == 4) {

 break;

 }

 System.out.println(i);

 }

 }

}

Output:

0

1

2

3

Continue: skips the particular iteration

public class Main {

 public static void main(String[] args) {

 for (int i = 0; i < 10; i++) {

 if (i == 4) {

 continue;

 }

 System.out.println(i);

 }

 }

}

Output:
0

1

2

3

5

6

7
8

9

Q. 1b) Explain the different access specifiers in Java.

There are four types of Java access modifiers:

1. Private: The access level of a private modifier is only within the class. It cannot be accessed from

outside the class.

2. Default: The access level of a default modifier is only within the package. It cannot be accessed

from outside the package. If you do not specify any access level, it will be the default.

3. Protected: The access level of a protected modifier is within the package and outside the

package through child class. If you do not make the child class, it cannot be accessed from

outside the package.

4. Public: The access level of a public modifier is everywhere. It can be accessed from within the

class, outside the class, within the package and outside the package.

Access

Modifier

within

class

within

package

outside package by subclass

only

outside

package

Private Y N N N

Default Y Y N N

Protected Y Y Y N

Public Y Y Y Y

Q. 2 a) Differentiate between method overloading and overriding with suitable example.

There are many differences between method overloading and method overriding in java. A list of

differences between method overloading and method overriding are given below:

No. Method Overloading Method Overriding

1) Method overloading is used to increase the

readability of the program.

Method overriding is used to provide

the specific implementation of the

method that is already provided by its

super class.

2) Method overloading is performed within class. Method overriding occurs in two

classes that have IS-A (inheritance)

relationship.

3) In case of method overloading, parameter must be

different.

In case of method

overriding, parameter must be same.

4) Method overloading is the example of compile time

polymorphism.

Method overriding is the example

of run time polymorphism.

5) In java, method overloading can't be performed by

changing return type of the method only. Return type

can be same or different in method overloading. But

you must have to change the parameter.

Return type must be same or

covariant in method overriding.

Java Method Overloading example
class OverloadingExample{

static int add(int a,int b){return a+b;}

static int add(int a,int b,int c){return a+b+c;}

}

Java Method Overriding example
class Animal{

void eat(){System.out.println("eating...");}

}

class Dog extends Animal{

void eat(){System.out.println("eating bread...");}

}

Q. 2b) Create a java class called Student with following details as variable (USN, Name, Branch,

Phone number). Write a Java program to create a student object and print USN, Name, Branch,

Phone number with suitable message.

//Java Program to illustrate how to define a class and fields

//Defining a Student class.

class Student{

 //defining fields

 String USN;//field or data member or instance variable

 String name;

String branch;

int phone;

 void displayInformation(){System.out.println(“My usn is”+ USN+" "+name+ “ ” +branch + “ “ +phone); }

}

class TestStudent4{

 public static void main(String args[]){

 Student s1=new Student();

 Student s2=new Student();

S1.USN=”1cr19is001”;

S1.name= “Rahul”;

S1.branch=”ise”;

S1.phone=1234;

 s1.displayInformation();

 s2.displayInformation();

 }

}

Output:

Q. 3 a) What is super? Explain with suitable example

Usage of Java super Keyword

1. super can be used to refer immediate parent class instance variable.

2. super can be used to invoke immediate parent class method.

super() can be used to invoke immediate parent class constructor

super is used to invoke parent class constructor.

class Animal{

Animal(){System.out.println("animal is created");}

}

class Dog extends Animal{

Dog(){

super();

System.out.println("dog is created");

}

}

class TestSuper3{

public static void main(String args[]){

Dog d=new Dog();

}}

Output:

animal is created

dog is created

Q. 3 b) What is a class? How an object is created for the class?
A class is a group of objects which have common properties. It is a template or blueprint from which

objects are created. It is a logical entity. It can't be physical.

An object is an instance of a class. A class is a template or blueprint from which objects are

created. So, an object is the instance(result) of a class.

Create an object called "myObj" and print the value of x:

public class Myclass {

 int x = 5;

 public static void main(String[] args) {

 Myclass myObj = new Myclass();

 System.out.println(myObj.x);

 }

}

Q.4a) Explain the Garbage Collection in Java.

Since objects are dynamically allocated by using the new operator, you might be wondering

how such objects are destroyed and their memory released for later reallocation. In some

languages, such as C++, dynamically allocated objects must be manually released by use of a

delete operator. Java takes a different approach; it handles ideal location for you

automatically.

The technique that accomplishes this is called garbage collection. It works like this: when no

references to an object exist, that object is assumed to be no longer needed, and the memory

occupied by the object can be reclaimed. There is no explicit need to destroy objects as in C++.

Garbage collection only occurs sporadically (if at all) during the execution of your program. It

will not occur simply because one or more objects exist that are no longer used. Furthermore,

different Java run-time implementations will take varying approaches to garbage collection, but

for the most part, you should not have to think about it while writing your programs.

Q 4b) Explain the following

i)final ii) finalize()

The final keyword in java is used to restrict the user. The java final keyword can be used in many context.

Final can be:

1. variable

2. method

3. class

1) Java final variable
1. class Bike9{

2. final int speedlimit=90;//final variable

3. void run(){

4. speedlimit=400;

5. }

6. public static void main(String args[]){

7. Bike9 obj=new Bike9();

8. obj.run();

9. }

10. }//end of class

Output:compile time error

The finalize() Method

Sometimes an object will need to perform some action when it is destroyed. For example, if an

object is holding some non-Java resource such as a file handle or character font, then you might

want to make sure these resources are freed before an object is destroyed. To handle such

situations, Java provides a mechanism called finalization. By using finalization, you can define

specific actions that will occur when an object is just about to be reclaimed by the garbage

collector.

To add a finalizer to a class, you simply define the finalize() method. The Java run time calls

that method whenever it is about to recycle an object of that class. Inside the finalize() method,

you will specify those actions that must be performed before an object is destroyed. The garbage

collector runs periodically, checking for objects that are no longer referenced by any running

state or indirectly through other referenced objects. Right before an asset is freed, the Java run

time calls the finalize() method on the object.

The finalize() method has this general form:

protected void finalize()

{

// finalization code here

}

Q. 5a) What are the salient features of constructors? Explain different types of constructors in

Java with suitable example.

Constructors cannot be private.

A constructor cannot be abstract, static, final, native, strictfp, or synchronized

A constructor can be overloaded.

Constructors cannot return a value.

Constructors do not have a return type; not even void.

An abstract class can have the constructor.

Constructors name must be similar to that of the class name inside which it resides.

Constructors are automatically called when an object is created.

There are two types of constructors in Java:

1. Default constructor (no-arg constructor)

2. Parameterized constructor

Default Constructor – A constructor that accepts no parameter is called Default
Constructor. It is not necessary to have a constructor block in your class definition. If
you don’t explicitly write a constructor, the compiler automatically inserts one for you.

Example illustrating Default Constructor in Java:

Example illustrating Default Constructor in Java:

Parameterized Constructor – A constructor is called Parameterized Constructor when
it accepts a specific number of parameters. To initialize data members of a class with
distinct values.

Example illustrating Parameterized Constructor:

Q.6a) List the various types of inheritance in Java and explain with suitable example

Below are the different types of inheritance which is supported by Java.

1. Single Inheritance : In single inheritance, subclasses inherit the features of one

superclass. In image below, the class A serves as a base class for the derived class

B.

1. class Animal{

2. void eat(){System.out.println("eating...");}

3. }

4. class Dog extends Animal{

5. void bark(){System.out.println("barking...");}

6. }

7. class TestInheritance{

8. public static void main(String args[]){

9. Dog d=new Dog();

10. d.bark();

11. d.eat();

12. }}

Output:

barking...

eating...
• Multilevel Inheritance : In Multilevel Inheritance, a derived class will be inheriting a

base class and as well as the derived class also act as the base class to other class. In

below image, the class A serves as a base class for the derived class B, which in turn

serves as a base class for the derived class C. In Java, a class cannot directly access the

grandparent’s members.
•

• class Animal{

• void eat(){System.out.println("eating...");}

• }

• class Dog extends Animal{

• void bark(){System.out.println("barking...");}

• }

• class BabyDog extends Dog{

• void weep(){System.out.println("weeping...");}

• }

• class TestInheritance2{

• public static void main(String args[]){

• BabyDog d=new BabyDog();

• d.weep();

• d.bark();

• d.eat();

• }}

Output

weeping...

barking...

eating...

3. • Hierarchical Inheritance : In Hierarchical Inheritance, one class serves as a superclass

(base class) for more than one sub class.In below image, the class A serves as a base class for the

derived class B,C and D.

1. class Animal{

2. void eat(){System.out.println("eating...");}

3. }

4. class Dog extends Animal{

5. void bark(){System.out.println("barking...");}

6. }

7. class Cat extends Animal{

8. void meow(){System.out.println("meowing...");}

9. }

10. class TestInheritance3{

11. public static void main(String args[]){

12. Cat c=new Cat();

13. c.meow();

14. c.eat();

15. //c.bark();//C.T.Error

16. }}

Output

meowing...

eating...

4. Multiple Inheritance (Through Interfaces) : In Multiple inheritance ,one class can have

more than one superclass and inherit features from all parent classes. Please note that Java does

not support multiple inheritance with classes. In java, we can achieve multiple inheritance only

through Interfaces. In image below, Class C is derived from interface A and B

 class A{

2. void msg(){System.out.println("Hello");}

3. }

4. class B{

5. void msg(){System.out.println("Welcome");}

6. }

7. class C extends A,B{//suppose if it were

8.

9. public static void main(String args[]){

10. C obj=new C();

11. obj.msg();//Now which msg() method would be invoked?

12. }

13. }

Output
Compile Time Error Hybrid Inheritance(Through Interfaces) : It is a mix of

two or more of the above types of

inheritance. Since java doesn’t support multiple inheritance with classes, the hybrid inheritance

is also not possible with classes. In java, we can achieve hybrid inheritance only through

Interfaces.

https://www.edureka.co/java-j2ee-training-course
https://www.edureka.co/java-j2ee-training-course
https://www.edureka.co/java-j2ee-training-course
https://www.edureka.co/java-j2ee-training-course
https://www.edureka.co/java-j2ee-training-course
https://www.edureka.co/java-j2ee-training-course
https://www.edureka.co/java-j2ee-training-course
https://www.edureka.co/java-j2ee-training-course
https://www.edureka.co/java-j2ee-training-course
https://www.edureka.co/java-j2ee-training-course
https://www.edureka.co/java-j2ee-training-course
https://www.edureka.co/java-j2ee-training-course
https://www.edureka.co/java-j2ee-training-course
https://www.edureka.co/java-j2ee-training-course
https://www.edureka.co/java-j2ee-training-course
https://www.edureka.co/java-j2ee-training-course
https://www.edureka.co/java-j2ee-training-course
https://www.edureka.co/java-j2ee-training-course
https://www.edureka.co/java-j2ee-training-course
https://www.edureka.co/java-j2ee-training-course

J When

 Hybrid I

•
• Lifetime Access

https://www.edureka.co/java-j2ee-training-course
https://www.edureka.co/java-j2ee-training-course
https://www.edureka.co/java-j2ee-training-course
https://www.edureka.co/java-j2ee-training-course
https://www.edureka.co/java-j2ee-training-course
https://www.edureka.co/java-j2ee-training-course

