

Fourth Semester B.E. Degree Examination, July/August 2022 **Applied Thermodynamics**

Time: 3 hrs. Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. Use of Thermodynamics data hand book is permitted.

Module-1

- a. Derive an expression of air standard efficiency of diesel cycle with neat PV and T-S 1
 - b. An engine with 200mm cylinder diameter and 300mm Stroke length works on diesel cycle. The initial pressure and temperature of air are 0.1 MPa and 27°C. The cutoff is 8% of Stroke volume and compression ratio is 15. Determine:
 - i) Pressure and temperature at all salient points ii) Air standard efficiency. (10 Marks)

a. Explain any two methods of deeming frictional power.

(08 Marks)

b. The following observations were made during one hour test on a single Stroke oil engine. Bore = 300mm: Stroke = 450 mm; mass of fuel used = 8.8Kg;

Calorific value = 41800kJ/Kg;

Average speed = 200rpm, Mean effective pressure = 5.8 bar, Brake load = 1860N, Mass of cooling water = 650 Kg, Temperature rise = 22°C, Diameter of Brake drum = 1.22 m. Calculate: i) Mechanical efficiency ii) Brake thermal efficiency iii) Draw heat balance

sheet on kJ/hr basis.

(12 Marks)

Module-2

- a. Derive an expression of optimum pressure ratio for maximum workout put in case of actual 3 Brayton cycle.
 - b. Air enters the compressor of a gas turbine plant operating on Brayton cycle at 101.325KPa, 27°C. The pressure ratio in the cycle is 6. Calculate the maximum temperature in the cycle and cycle efficiency. Assume $W_T = 2.5W_c$. Where W_T and W_C are the turbine and compressor work respectively. Take r = 1.4.

OR

- a. With a neat block diagram and T-S diagram, explain how 'regeneration' increases thermal efficiency of gas turbine plant.
 - b. Air is drawn in a gas turbine unit at 15°C and 1.01bar and pressure ratio is 7. The compressor is driven by the high pressure turbine and low pressure turbine drives a separate shaft. The isentropic efficiencies of compressor and HP and LP turbines are 0.82. 085 and 0.85 respectively. If the maximum cycle temperature is 610°C, find:
 - i) The pressure and temperature of the gases entering the power turbine
 - ii) The net power developed by the unit per Kg/sec mass flow.
 - iii) Work ratio
 - iv) Thermal efficiency of the unit

Neglect the mass of the fuel and assume the following:

For compression process, $C_{Pa} = 1.005 \text{ kJ/Kg.K}$ and r = 1.4.

For combustion and expansion process: $C_{pg} = 1.15 \text{ kJ/Kg.K}$ and r = 1.33. (12 Marks)

Module-3

5 Discuss the effect of i) Boiler pressure ii) Condenser pressure iii) Super heat on the performance of a Rankine cycle. (10 Marks)

b. Steam at 1 bar and 350°C is expanded in a steam turbine to 0.08bar. It them enters the condenser, where it is condensed to saturated liquid water. Assume the turbine and feed pump efficiencies as 80% and 90% respectively. Determine per Kg of steam the network, the heat transferred to the working fluid and Rankine efficiency.

(10 Marks)

OR

- a. Sketch and explain the flow diagram and corresponding T-S diagram of practical regenerative Rankine cycle.
 (10 Marks)
 - b. A reheat cycle has the first stage supply conditions of 70bar and 500°C. The reheat is at 3 bar and to the same temperature.
 - i) Given that the efficiency of the first stage turbine is 80%, how much energy is added per kg of steam in the reheat coils?
 - ii) Assume that the same expansion efficiency exists in the second turbine. What is the thermal efficiency, if the condenser pressure is 0.03 bars? (10 Marks)

Module-4

- 7 a. Explain the effect of super heating and under cooling the refrigerant on the performance of vapour compression refrigeration cycle. (06 Marks)
 - b. What are the properties of refrigerants?

(04 Marks)

c. A vapour compression refrigerator uses methyl Chloride (R-40) and operates between the temperature limits of -10°C and 45°C. At the entry to the compressor the refrigerant is dry saturated and after the compression it acquires a temperature of 60°C. Find COP of the refrigerator. The relevant properties of R-40 are as follows:

Saturation temperature	Enthalpy		Entropy	
	Liquid	Vapour	Liquid	Vapour
-10°C	45.4	460.7	0.183	1.637
45°C	133	483.6	0.485	1.587

Also find mass of methyl chloride and power required for a capacity of 15 TOR. (10 Marks)

OR

- 8 a. Define: i) Wet bulb temperature ii) Dew point temperature iii) Relative humidity iv) Specific humidity v) Degree of saturation. (10 Marks)
 - b. Air is to be conditioned from 40° C (DBT) and 50% RH to a final temperature of 20°C (DBT) and 40% RH, by de-humidification process, followed by a reheat process. Assuming that the entire process is at constant pressure of 101.325 KPa, determine:
 - i) The amount of water to be removed from air
 - ii) The temperature of air leaving the dehumidifier
 - iii) Refrigeration in tons for air flow rate of 0.47 m³/sec
 - iv) Heating required in kW.

(10 Marks)

Module-5

9 a. Derive an expression for minimum work input by two stage compressor with intercooler.

(10 Marks)

- b. A single stage single acting reciprocating air compressor has a bore of 200mm and Stroke of 300mm. It receives air at 1 bar and 20°C and delivers it at 5.5 bar. If the compression follows the law $PV^{1.3} = C$ and clearance volume is 5% of the Stroke volume, determine:
 - i) Mean effective pressure
 - ii) Power required to drive the compressor if it runs at 500rpm.

(10 Marks)

OR

- 10 a. Derive an expression of critical pressure ratio which gives maximum discharge through the nozzle. (10 Marks)
 - b. Steam at 15bar and 250°C is expanded in a nozzle to 1 bar. For a discharge of 0.5kg/sec find throat and exit diameter for maximum discharge conditions. Assume the nozzle efficiency as 90%.

Re: Sir, regarding QP Scheme Modifications

"Dr M S Govinde Gowda" <msggowda1964@gmail.com>

September 29, 2022 9:11 AM

To: boe@vtu.ac.in

Dear Sir.

PFA for the corrected and verified scheme and solution for 18ME42-ATD and 18ME43-FM for your kind notice and approval. With regards

Dr. M.S.Govinde Gowda

Academic Senate Member, VTU & Chairman, BOS, Mechanical Board, VTU

Dean(Academics)

ATME College of Engineering 13th Kilometer, Mysore-Bannur-Bangalore Road MYSORE -570 028, Karnataka State Mob: 9972940201 / 9008097764

Web: www.atme.in

On Tue, Sep 27, 2022 at 11:19 AM < boe@vtu.ac.in > wrote:

Registrar (Evaluation) esvayaya Technological University

BELAGAVI - 590018

Visvesvaraya Technological University

Belagavi, Karnataka - 590 018

Scheme & Solutions

Signature of Scrutinizer

Subject Title:	Applied	Thermodyna	mnics
----------------	---------	------------	-------

Subject Code: 18 ME42

Question Number	Source	Marks Allocated
la	Derivation of PV-TS diagram=2M $ \gamma_{\text{air}} = 1 - \frac{1}{3} \frac{(\rho^{3} - 1)}{R_{c}^{3} - 1} \frac{\eta = f(\text{temperatures}) = 4M}{(\rho - 1)} $	(0
	Vs = 9.42 x103 m3	
Alternate Me	thod: NC = 6.73 × 104 m3	
$K = \frac{\rho - 1}{r_{c} - 1}$ $0.08 = \frac{\rho - 1}{15 - 1}$ $\rho = 2.12$	$P = \frac{V_3}{V_2} = 2.11 - 3M$ $Max = 59.82.1 3M$	
$Q_{\mathbb{R}} = C_{\mathbb{P}} (T_3 - T_2)$	Mar = 39.82.1.	
= 99°.7kJ kg $Q_{R} = C_{V} (T_{A} - T_{A})$ = 401 4kJ kg	1 / P2 = 44.3 beh T2 = 886.25 h	
$W_{sa} = Q_{\xi} - Q_{R}$ = 596.3 kJ k	P3=P2=44.3 box T3= 1869.98K	10
$\eta_{\text{D}} = \frac{W_{\text{net}}}{Q_{\text{S}}} = 59.8$	Py = 2.84 box Ty = 853.32 k 4) M	
	Explanation of any two melods of determining brictional Pover (4+4) M	8
b	BP = 23.76 KW @- MN = 77.361. 0-	
	MbG = BP = 23.25 1. (1)-	

Note-1:It is not clear whether it is a single cylinder with 2-stroke or 4-stroke, hence IP and Mechanical efficiency cannot be found out.

Then BP = 4M and $\eta_{b,th}$ =3M

Note-2:If any one assumed as single/double cylinder with 2-stroke or 4-stroke, accordingly marks to be awarded for IP and Mechanical efficiency.

"APPROVED"

18 ME 42 Subject Title: Applied Wermodynamics Subject Code: Marks Question Solution Allocated Number Heat balance theet on KJ/hr balis KJIhr ICTION . Heal- OIP Heal- Ilp a) QBP 85.53ml 271 Heat Supplied 100 6) Q(U as = 367.8×10 59.85×4 161 O) Qua 232. WHY 50.4 KI 12 367.57, 100 Total 367.8×10 100 Derivation of Rp= ncmT3 2(Y-1)=4MPV or TS diagram=2M η =f(temperatures)=4M T2 = 500.53 K 6 T4 = 750K - 07 T3= 1251K (27 m = 401. (4) M 10 OR Explanation of reguneration process to increase the thermal epoterony. - (5) M 8 a block diagram @ M T-S diagram 6)

Subject Code: 8 ME 42 Subject Title: Applied (Ecxmodynamics Marks Solution Allocated Number T2 = 502.16 K To! = 549.17 K WC = -262.47k KJ Tu= 654.76k=T5 Tu= 614.48k PG= PS= 1.656 6W WHAT = Turbine work = 262.47 15 580.5K T6 = 543.05 K TS = 614.44 K Turbre Work, WLPT = 69.79 Kg Network, Wast = 72.1 KW-0. Norte ratio = 0.21 - (2) m = 20.73 18.8% 12 Effect of (i) boild pressure -(3) 50) with appropriate (ii) Conducted Pressure 3 sketches 10 (iii) Super head-Molier Chart From Steam table al - P = 20 bal 2 t = 350c 3170 Pc=0.08 bar 3 h = 3138.6 KJ $h_3 = 2630 \text{ kJ/kg}$ S, = 7.1044 → S From steam table at P_c=0.08 bar $S_2 = S_3$ State 3 is in the superheated state $v_f = 0.001084 \text{ m}^3/\text{kg}$ $h_f = h_4 = 173.9 \text{ kJ/kg}$ S2= Sty + 3 St81

X1= 0.85

Subject Code: 18ME 42 Subject Title: Applied Thormody ramics Marks Question Solution Allocated Number Actual Prop Lionk, $Wp = Vf (P_1 - P_2) \times 10^2/\eta_p$ mb = 0.1001 KI - (2) -Also, Pump LOOK = h, -hig Phrong ebbraroncy, Mp=h,-h4 : [h,'=1761]

h,'-h4 : [h,'=1761]

Turbine work, H= h2-h3' [4] = 73246 Heat Supplied, Os = h_-h1' = 2962/kg Root: Net work done, W = 730.45 10 Rankine $m = \frac{14.4\%}{00} = \frac{14.4\%}{24.65} + (2) -$ Note: Any small variations can be treated as correct answer Flow diagram -3 T-s. digram @ prinord Explanation - (5) prinord 6 a) 10 . Priocety 6)

Question Number	Solution Solution	Marks Allocated
	From Mollier chall, hz = 3400 kJ/kg	
-	$h_3 = 2650 \frac{kT}{kg}$, $h_4 = 350.0 \frac{kT}{kg}$ $h_5 = 2480 \frac{kT}{kg}$	
	Pump Moric, Mp = V+ [P,-P6]x100	
	Wp=7.01 kJ/kg (2)-	
	· Bw. Wp= h,-h6 : h,= 108 kJ	
	From tables, h6= h46=101 105 kg	l
	$\mathcal{O}_{f_1} = \frac{h_2 - h_3}{h_2 - h_3} = 0.8$ $W_{T1} = 600 \text{ kJ/kg}$ $W_{T1} = 600 \text{ kJ/kg}$	
	$\gamma_{1} = \frac{h_{4} - h_{5}'}{h_{4} - h_{5}} = 0.8 \qquad h_{5}' = 2684 \text{ ht}$ $W_{12} = 816 \text{ kJ/kg}$	
	Eminty added in retuel coil = hig-hi	
	$Q_B = h_2 - h_1 = 3302 \text{ kJ/kg}$ $Q_B = h_2 - h_1 = 3302 \text{ kJ/kg}$ $Q_B = h_2 - h_1 = 3302 \text{ kJ/kg}$	
	$Qs=Q_B+Q_{RH}=4008 \text{ kJ/kg}$ Thursd $M=U_T-U_P=35.1.$	10
	Note: Small variations in reading the enthalpies shall be treated as	
	correct values to award full marks With appropris	ite -
Ta	correct values to award full marks (i) Ebbert of Super heating (ii) Ebbert of Super heating (iii) Ebbert of Super heating (iiii) Ebbert of Super heating (iii) Ebbert of Super heating (iii) Ebbert of Super heatin	ram
	(11) E poer of a marie (1)	4
6)	Desirable Properties of reprigurant (4)	
	4 h	
(c)	1 Ti= 263 K	
	T21 = T3 = 318 K	
	T2 = Tsup = 333 k	
	4	

Subject Title: Applied | Corondyramics Subject Code: 18 HE 42

Question Number	e: Applied Currodynamics Subject Code: 18 HE Solution	Marks Allocated
	S, = S2	
	Sg = Sg2 + Cp la Tsup	
	Tai	
	CP = 1.09	
	h,= hg,= 460.7 kg	
	K.	
•	h_= h821 + cp (Tsy-Tsd=) = 500 kg	
	h3 = h63 = 133 = h4 - 4 -	
	i) cop = h,-h4 - 8.38 - (5)-	
	h2-h1	
	(ii) wass of rocky chloride = concerty Hear absorbed	
	= 15×3.54	
	= 15×3.56 [mf= 0.16] kg	
	(iii) Porce Supplied, P= Capacity	10
	P= 6.29 KU (D)	10
	or $P=m(h_2-h_1)=0.16(500-460.7)=6.29kW$	
80)	Definition (2xD)	10
	Exam charl-	
(ط	From chart- W_= 0.023 V_= 0.92 m3/kg, h_= 103 kJ	
	WA = 0.06 hA = 21 KJ tA = 6°C	
	W1 = 0.06 h1 = 35 KJ/kg	
	m = 0.51 KS/sec	
(1)	Amount of water ormand, W,-D, = 0.017 (3).	_
(ii)	Tumperature of oir leaving to de-huniditive	
	Two perature of oir reasons the firm	

	the: Applied Thormodynamics Subject Code: 18ME	
Question Number	Solution	Marks Allocated
(ii	(iv) Heating (i) Conacty = 6643 KD D- ote: Full marks shall be awarded if small variations in enthalpies readi	l O
	Derivation, W= 2 n P.V. (P) 2n]	
9 a)	Derivaro, W- m-i	10
6)	P1 3 Vs = 0.00942 m ³ Vc = 5-1.Vs = 0.00047 m ³ V ₁ = V ₁ + V ₂ V ₂ = 0.00989 m ³ V ₃ = 0.00989 m ³ V ₄ = 0.00174 m ³ (a) Volume of air delivered, Va = V ₁ - V ₄ Hark done by 100 compressor = W	
	$W = \frac{N}{N-1} \cdot P_1 V_2 \left[\frac{P_2}{P_1} \right]^{\frac{N-1}{N}} $ $W = \frac{N}{N-1} \cdot P_1 V_2 \left[\frac{P_2}{P_1} \right]^{\frac{N-1}{N}} $ $W = \frac{N}{N-1} \cdot P_1 V_2 \left[\frac{P_2}{P_1} \right]^{\frac{N-1}{N}} $ $W = \frac{N}{N-1} \cdot P_1 V_2 \left[\frac{P_2}{P_1} \right]^{\frac{N-1}{N}} $ $W = \frac{N}{N-1} \cdot P_1 V_2 \left[\frac{P_2}{P_1} \right]^{\frac{N-1}{N}} $ $W = \frac{N}{N-1} \cdot P_1 V_2 \left[\frac{P_2}{P_1} \right]^{\frac{N-1}{N}} $ $W = \frac{N}{N-1} \cdot P_1 V_2 \left[\frac{P_2}{P_1} \right]^{\frac{N-1}{N}} $ $W = \frac{N}{N-1} \cdot P_1 V_2 \left[\frac{P_2}{P_1} \right]^{\frac{N-1}{N}} $ $W = \frac{N}{N-1} \cdot P_1 V_2 \left[\frac{P_2}{P_1} \right]^{\frac{N-1}{N}} $ $W = \frac{N}{N-1} \cdot P_1 V_2 \left[\frac{P_2}{P_1} \right]^{\frac{N-1}{N}} $ $W = \frac{N}{N-1} \cdot P_1 V_2 \left[\frac{P_2}{P_1} \right]^{\frac{N-1}{N}} $ $W = \frac{N}{N-1} \cdot P_1 V_2 \left[\frac{P_2}{P_1} \right]^{\frac{N-1}{N}} $ $W = \frac{N}{N-1} \cdot P_1 V_2 \left[\frac{P_2}{P_1} \right]^{\frac{N-1}{N}} $ $W = \frac{N}{N-1} \cdot P_1 V_2 \left[\frac{P_2}{P_1} \right]^{\frac{N-1}{N}} $ $W = \frac{N}{N-1} \cdot P_1 V_2 \left[\frac{P_2}{P_1} \right]^{\frac{N-1}{N}} $ $W = \frac{N}{N-1} \cdot P_1 V_2 \left[\frac{P_2}{P_1} \right]^{\frac{N-1}{N}} $ $W = \frac{N}{N-1} \cdot P_1 V_2 \left[\frac{P_2}{P_1} \right]^{\frac{N-1}{N}} $ $W = \frac{N}{N-1} \cdot P_1 V_2 \left[\frac{P_2}{P_1} \right]^{\frac{N-1}{N}} $ $W = \frac{N}{N-1} \cdot P_1 V_2 \left[\frac{P_2}{P_1} \right]^{\frac{N-1}{N}} $ $W = \frac{N}{N-1} \cdot P_1 V_2 \left[\frac{P_2}{P_1} \right]^{\frac{N-1}{N}} $ $W = \frac{N}{N-1} \cdot P_1 V_2 \left[\frac{P_2}{P_1} \right]^{\frac{N-1}{N}} $ $W = \frac{N}{N-1} \cdot P_1 V_2 \left[\frac{P_2}{P_1} \right]^{\frac{N-1}{N}} $ $W = \frac{N}{N-1} \cdot P_1 V_2 \left[\frac{P_2}{P_1} \right]^{\frac{N-1}{N}} $ $W = \frac{N}{N-1} \cdot P_1 V_2 \left[\frac{P_2}{P_1} \right]^{\frac{N-1}{N}} $ $W = \frac{N}{N-1} \cdot P_1 V_2 \left[\frac{P_2}{P_1} \right]^{\frac{N-1}{N}} $ $W = \frac{N}{N-1} \cdot P_1 V_2 \left[\frac{P_2}{P_1} \right]^{\frac{N-1}{N}} $ $W = \frac{N}{N-1} \cdot P_1 V_2 \left[\frac{P_2}{P_1} \right]^{\frac{N-1}{N}} $ $W = \frac{N}{N-1} \cdot P_1 V_2 \left[\frac{P_2}{P_1} \right]^{\frac{N-1}{N}} $ $W = \frac{N}{N-1} \cdot P_1 V_2 \left[\frac{P_2}{P_1} \right]^{\frac{N-1}{N}} $ $W = \frac{N}{N-1} \cdot P_1 V_2 \left[\frac{P_2}{P_1} \right]^{\frac{N-1}{N}} $ $W = \frac{N}{N-1} \cdot P_1 V_2 \left[\frac{P_2}{P_1} \right]^{\frac{N-1}{N}} $ $W = \frac{N}{N-1} \cdot P_1 V_2 \left[\frac{P_1}{P_1} \right]^{\frac{N-1}{N}} $ $W = \frac{N}{N-1} \cdot P_1 V_2 \left[\frac{P_1}{P_1} \right]^{\frac{N-1}{N}} $ $W = \frac{N}{N-1} \cdot P_1 V_2 \left[\frac{P_1}{P_1} \right]^{\frac{N-1}{N}} $ $W = \frac{N}{N-1} \cdot P_1 V_2 \left[\frac{P_1}{P_1} \right]^{\frac{N-1}{N}} $ $W = \frac{N}{N-1} \cdot P_1 V_2 \left[\frac{P_1}{P_1} \right]^{\frac{N-1}$	(0

Subject Title: Applied thermodynamics

Subject Code: 18ME42

Question Number	e: Applied Thermodynamics Subject Code: 18ME	Marks Allocate
109	Derivation $\frac{P_2}{P_1} = \frac{m+1}{2} \frac{m}{1-n}$	10
	4 h 1 8 8 8 x	
6)	2-1	
	3	
	S	
	$\frac{P_2}{P_1} = \left[\frac{2}{m+1}\right] \frac{m}{m-1} = 0.545$ $P_2 = 8.175$ box	
	From h-s diagram,	
	Al- Pi=15 par 8 1=250c, n=2920 15	
	M- Pz = 8.175 bal, hz = 2800 kJ/14	
	V2= 0.3 milky D.	
	AL P3= 1 box h3= 2440 0-	
	velocity at Throat, U2= 44.72 Vh,-h2	
	V2= 489.88 m/uc	
	$m = \frac{A_2 V_2}{N_2}$ $A_2 = 3.06 \times 10^{-14} \text{ ms}^2$	
	-: d2=0.019/m - (2)-	
	$M_z = h_1 - h_3'$ $h_3 - h_3 = 24.76 \text{ kJ}$ leg	
proved by	velocity at exit, Usi = 44.72 Vh, -h31 = 942.	3
	Jd3=0.031 m 3-	10

Dr. M.S. Govinde Gowda Chairman, BOE, Mechanical Board, VTU.

-x-

- A - SHAPOVED

APPROVED

Gagastrar (Evaluation)