

Internal Assessment Test 2 - Aug 2022

Sub:	Applied Hydraulics					Sub Code:	18CV43	Branci	h: CV			
Date:	04.08.2022 Duration: 90 mins. Max Marks: 50					Sem/Sec:	IV	IV			OBE	
Answer all questions. Provide neat sketches wherever necessary. Assume data wherever required.								<u>ed.</u>]	MARKS	СО	RBT	
1	Explain three types of similarities in model analysis.								[10]	COI	L2	
	Using Buckingham's Π - theorem, show that the velocity through a circular orifice is given by, $\mathbf{v} = \sqrt{2gH}\phi \left[\frac{D}{H}, \frac{\mu}{\rho \nu H}\right]$ where \mathbf{H} is head causing flow, μ is coefficient viscosity, ρ is mass density and \mathbf{g} is gravitational acceleration.								[10]	COI	L4	
3	Derive the conditions for most economical trapezoidal section								[10]	CO2	L3	
	An open channel is to be constructed of trapezoidal section and with side slope 1V:1.5H. Find relationship between bottom width and depth of flow for min excavation. If flow is to be 2.7cumec, calculate the bottom width and depth of flow assuming C=44.5 and bed slope =1/4000.								[10]	CO2	L4	
	Derive an equation for the force exerted and work done by a jet of water on a fixed curved plate in the direction of the jet when the jet strikes at the centre of the plate.								[10]	CO2	L4	

Signature of CI

Signature of CCI

Signature of HOD

SIMILITUDE

- o It is defined as the similarity between the model and its prototype. It means it has similar properties. There are 3 types of similarities which must exist between model and prototype.
- 1. Geometric Similarity
- 2. Kinematic Similarity
- 3. Dynamic Similarity

GEOMETRIC SIMILARITY

• When the ratios of the linear dimensions in the model and prototype are equal, it is said to be geometrically similar.

Let

 $L_m = Length of model, L_p = Length of prototype$

 $B_m = Breadth of model, B_p = Breadth of prototype$

 $H_m = Height of model, H_p = Height of prototype$

 $A_m = Area of model, A_p = Area of prototype$

 $V_m = Volume of model, V_p = Volume of prototype$

For geometric similarity,

$$\frac{L_p}{L_m} = \frac{B_p}{B_m} = \frac{H_p}{H_m} = L_r$$

 $L_r = \text{scale ratio}$

For area

For volume

$$\frac{A_{p}}{A_{m}} = \frac{L_{p}}{L_{m}} * \frac{B_{p}}{B_{m}} = L_{r}^{2} \qquad \frac{V_{p}}{V_{m}} = \frac{L_{p}}{L_{m}} * \frac{B_{p}}{B_{m}} * \frac{H_{p}}{H_{m}} = L_{r}^{3}$$

4

KINEMATIC SIMILARITY

- When the ratios of the velocity and acceleration at the corresponding points in the model and corresponding points in the prototype are same, it is said have kinematic similarity.
- The direction of the vector quantities (velocity and acceleration) should be same.

In the fluid, let

 v_{m_1} = velocity at pt 1 in model, v_{p_1} = velocity at pt 1 in prototype v_{m_2} = velocity at pt 2 in model, v_{p_2} = velocity at pt 2 in prototype a_{m_1} = acc at pt 1 in model, a_{p_1} = acc at pt 1 in prototype

 a_{m_2} = acc at pt 2 in model, a_{p_2} = acc at pt 2 in prototype

For kinematic similarity

$$\frac{\mathbf{V}_{\mathbf{p}_1}}{\mathbf{V}_{\mathbf{m}_1}} = \frac{\mathbf{V}_{\mathbf{p}_2}}{\mathbf{V}_{\mathbf{m}_2}} = \mathbf{V}_r$$

 v_r is velocity ratio

$$\frac{a_{p_1}}{a_{m_1}} = \frac{a_{p_2}}{a_{m_2}} = a_r$$

 a_r is acceleration ratio

DYNAMIC SIMILARITY

- When the ratios of the forces acting at the corresponding points in the model and in the prototype are same, it is said have dynamic similarity.
- The direction of the forces should be same.

At a point, let

$$(F_i)_m$$
 = Inertial forcein model, $(F_i)_p$ = Inertial forcein prototype

$$(F_v)_m$$
 = Viscous forcein model, $(F_v)_p$ = Viscous forcein prototype

$$(F_g)_m$$
 = Gravity forcein model, $(F_g)_p$ = Gravity forcein prototype

For dynamic similarity

$$\frac{\left(\mathbf{F}_{i}\right)_{\mathbf{p}}}{\left(\mathbf{F}_{i}\right)_{\mathbf{m}}} = \frac{\left(\mathbf{F}_{v}\right)_{\mathbf{p}}}{\left(\mathbf{F}_{v}\right)_{\mathbf{m}}} = \frac{\left(\mathbf{F}_{g}\right)_{\mathbf{p}}}{\left(\mathbf{F}_{g}\right)_{\mathbf{m}}} = F_{r}$$

 F_r is forceratio

Types of forces in moving fluid

1. Inertial Force, F_i

It is equal to the product of mass, m and acceleration, a and acts in the opposite direction to the direction of acceleration.

$$F_{i} = m*a$$

$$= \rho*Volume* \frac{Velocity}{Time} = \rho* \frac{Volume}{Time}* Velocity$$

$$= \rho*Area* \frac{Length}{Time}* Velocity$$

$$= \rho*Area* Velocity* Velocity$$

$$= \rho Av^{2}$$

2. Viscous Force, F_{ν}

It is equal to the product of shear stress, τ due to viscosity and surface area of flow, A. Considered in problems where viscosity is significant.

$$F_v = \tau * A$$

$$= \mu \frac{du}{dv} * A$$

$$=\mu \frac{v}{L}A$$

Newton's law of viscosity,
$$\tau = \mu \frac{du}{dy}$$

3. Gravity Force, F_g

It is equal to the product of mass, m and acceleration due to gravity, g of the flowing fluid. This force is considered in open channel flow.

$$F_g = m * g$$

$$= \rho * Volume * g$$

$$= \rho * Area * Length * g$$

$$= \rho ALg$$

4. Pressure Force, F_p

It is equal to the product of pressure intensity, p and cross section area, A of the flowing fluid. It is considered in pipe flow.

$$F_p = p * A$$
$$= pA$$

5. Surface tension force, F_s It is equal to the product of surface tension, σ and length of surface of flow, L.

$$F_s = \sigma * L$$

$$= \sigma L$$

6. Elastic force, F_e

It is equal to the product of elastic stress, *K* and area of flowing fluid, A.

$$F_e = K * A$$

$$= KA$$

Problem 2 – Buckingham's Π theorem

• Using Buckingham's Π – theorem, show that the velocity through a circular orifice is given by

$$V = \sqrt{2gH}\phi \left[\frac{D}{H}, \frac{\mu}{\rho VH}\right]$$

$$V = \sqrt{2gH} * \phi \left[\frac{D}{H}, \frac{\mu}{\rho VH} \right]$$

$$1.g = LT^{-2}$$

$$2.H = L$$

$$3.D = L$$

$$4.\rho = (kg/m^3) = ML^{-3}$$

$$5.\mu = ML^{-1}T^{-1}$$

$$6.V = LT^{-1}$$

$$V = f(g, H, D, \mu, \rho)$$

$$f_1(V, g, H, D, \mu, \rho) = 0$$

There 6 variables and

3 fundamental dimensions

$$\therefore 6-3=3\pi$$
 - terms

$$f_1(\pi_1, \pi_2, \pi_3) = 0$$

Re peating variables

$$H, g, \rho$$

$$\pi_1 = H^{a_1} g^{b_1} \rho^{c_1} V$$

$$\pi_2 = H^{a_2} g^{b_2} \rho^{c_2} . D$$

$$\pi_3 = H^{a_3}g^{b_3}\rho^{c_3}.\mu$$

$$\pi_1 = H^{a_1} g^{b_1} \rho^{c_1} V$$

$$\mathbf{M}^{0}\mathbf{L}^{0}\mathbf{T}^{0} = \mathbf{L}^{a_{1}}(LT^{-2})^{b_{1}}(ML^{-3})^{c_{1}}.LT^{-1}$$

$$a_1 = -1/2$$
 $b_1 = -1/2$ $c_1 = 0$

$$\pi_1 = H^{-1/2}g^{-1/2}\rho^0.V \rightarrow \pi_1 = \frac{V}{\sqrt{gH}}$$

$$\pi_2 = H^{a_2} g^{b_2} \rho^{c_2} . D$$

$$a_2 = -1$$
 $b_2 = 0$ $c_2 = 0$

$$\pi_2 = \text{H}^{-1} \text{g}^0 \rho 0.D \to \pi_2 = \frac{D}{H}$$

$$\pi_3 = H^{a_3} g^{b_3} \rho^{c_3} . \mu$$

$$a_3 = -3/2$$
 $b_3 = -1/2$ $c_3 = -1$

$$\pi_3 = H^{-3/2}g^{-1/2}\rho^{-1}.\mu \to \pi_3 = \frac{\mu}{\rho H^{3/2}\sqrt{g}}$$

Solving for a_i, b_i and c_i in respective eqns

$$f_1(\pi_1, \pi_2, \pi_3) = 0$$

$$\pi_1 = \frac{V}{\sqrt{gH}} = \frac{V}{\sqrt{2gH}}$$
 (applying principles of π – term)

$$\pi_2 = \frac{L}{H}$$

$$\pi_3 = \frac{\mu}{\rho H^{3/2} \sqrt{g}} = \frac{\mu}{\rho H \sqrt{gH}} * \frac{V}{V} = \frac{\mu}{\rho H V} * \frac{V}{\sqrt{gH}} = \frac{\mu}{\rho H V} * \pi_1$$

$$\pi_3 = \frac{\mu}{\rho HV} * \pi_1 \rightarrow \pi_3 / \pi_1 = \frac{\mu}{\rho HV}$$
 (applying principles of π – term)

$$f_1(\frac{V}{\sqrt{2gH}}, \frac{D}{H}, \frac{\mu}{\rho HV}) = 0 \rightarrow \frac{V}{\sqrt{2gH}} = \phi \left(\frac{D}{H}, \frac{\mu}{\rho VH}\right)$$

$$V = \sqrt{2gH} * \phi \left(\frac{D}{H}, \frac{\mu}{\rho VH}\right)$$

Hence proved.

Most economical section – trapezoidal

Let

Depth of flow - D

Bed width - B

Side slope - 1/n

Wetted area, A = D * (B + nD)

Re writing the above eqn(B in terms of A, D, n)

$$\frac{A}{D} = B + nD \rightarrow B = \frac{A}{D} - nD....(1)$$

Wetted Perimeter- $P = B + 2D\sqrt{1 + n^2}$(2)

Sub (1) in (2)

$$P = \frac{A}{D} - nD + 2D\sqrt{1 + n^2}$$

For most economical section, P is min

$$\frac{dP}{dD} = 0$$

$$\frac{dP}{dD} = -\frac{A}{D^2} - n + 2\sqrt{1 + n^2} = 0$$

$$-\frac{A}{D^2} - n + 2\sqrt{1 + n^2} = 0$$

$$\frac{A}{D^2} + n = 2\sqrt{1 + n^2}$$

Sub the value of A

$$\frac{D*(B+nD)}{D^2} + n = 2\sqrt{1+n^2}$$

$$\frac{(B+nD)}{D} + n = 2\sqrt{1+n^2}$$

$$(B+nD) + nD = 2D\sqrt{1+n^2}$$

$$(B+2nD) = 2D\sqrt{1+n^2}$$

$$\frac{(B+2nD)}{2} = D\sqrt{1+n^2}$$

1. Half of the top width is equal to one of the sloping sides

Calculation of R

$$R = \frac{A}{P} = \frac{D*(B+nD)}{B+2D\sqrt{1+n^2}}....(3)$$

$$D\sqrt{1+n^2} = \frac{B+2nD}{2}....(4)$$

Sub(4)in (3)

$$R = \frac{A}{P} = \frac{D*(B+nD)}{B+2(\frac{B+2nD}{2})} = \frac{D*(B+nD)}{B+B+2nD} = \frac{D*(B+nD)}{2(B+nD)}$$

$$R = \frac{L}{2}$$

2. For most economical trapezoidal section, the hydraulic radius is equal to half of the depth of flow.

Let

 α - angle made by the sloping side wrt to x - axis(horizontal axis)

O-centre of the top width

OF - perpendicular line to the sloping side MN

Taking $\triangle OFM(right angled triangle)$

$$\sin \alpha = \frac{OF}{OM} \to OF = OM * \sin \alpha(i)$$

Taking ΔMKN (right angled triangle)

Taking
$$\Delta MKN$$
 (right angled triangle)
$$\sin \alpha = \frac{MK}{MN} = \frac{D}{D*\sqrt{1+n^2}}.....(ii)$$

$$Sub (ii) in (i)$$

$$OE = OM * \sin \alpha$$

$$OF = OM * \sin \alpha$$

$$OF = OM * \frac{D}{D*\sqrt{1+n^2}}$$

 $Sub\ OM = half\ of\ Top\ width,\ T = D*\sqrt{1+n^2}\ (first\ condition)$

$$OF = D * \sqrt{1 + n^2} * \frac{D}{D * \sqrt{1 + n^2}} = D$$

3. Thus for a most economical trapezoidal section, a semi-circle with centre O(centre of top width) and radius equal to the depth of flow, D will be tangential to the three sides of the most economical trapezoidal section.

PROBLEM

• An open channel is to be constructed of trapezoidal section and with side slope 1V:1.5H. Find relationship between bottom width and depth of flow for min excavation. If flow is to be 2.7cumec, calculate the bottom width and depth of flow assuming C=44.5 and bed slope =1/4000.

Let B be the bottom width and y be the depth of flow Most eonomical trapezoidal section

1.
$$\frac{B + 2ny}{2} = y * \sqrt{1 + n^2}$$
....(1)
 $A = y(B + ny)$

$$2.R = y/2$$

 $n = 1.5$

$$\frac{B+2*1.5y}{2} = y*\sqrt{1+1.5^2}$$

$$2.7*20*\sqrt{2}$$

$$44.5$$

$$2.105y^2*\sqrt{y}$$

$$B + 3y = y * 2 * \sqrt{1 + 1.5^{2}}$$

$$B = 0.605y$$

$$B = 0.605y$$

$$Q = 2.7m^3 / s$$

$$Q = 2.7m^3 / s$$

$$C = 44.5$$

$$C = 44.5$$

 $S = 1/4000$

$$\frac{2.7*20*\sqrt{20}}{44.5*2.105} = y^2 * \sqrt{y} = y^{(2+1/2)} = y^{5/2}$$

$$y = \left(\frac{2.7 * 20 * \sqrt{20}}{44.5 * 2.105}\right)^{2/5} = 1.46m$$

$$=1.40m$$

B = 0.605y = 0.605*1.46 = 0.885m $Q = A * C * \sqrt{RS}$

FORCE EXERTED BY THE JET ON **STATIONARY**CURVED PLATE AT THE CENTRE

• Force in the horizontal direction (in the direction of jet,

$$F_x = (m/\Delta t) * (v_{1x} - v_{2x})$$

$$F_x = \rho a v * (v - (-v \cos \theta))$$

$$F_x = \rho a v^2 (1 + \cos \theta)$$

• Force in the vertical direction,

$$F_y = (m/\Delta t) * (v_{1y} - v_{2y})$$

$$F_y = \rho a v^* (0 - v \sin \theta)$$

$$F_y = -\rho a v^2 \sin \theta$$

Fig. 1.3. Fluid jet striking a stationary curved plate.

