
1. Sedimentation is a natural process by which solid particles (sp. Gravity >1), which are suspended settles under the action of gravity, when the turbulence is retarded by offering storage to the water

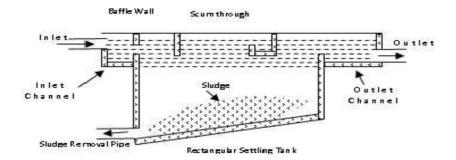
Water is not allowed to rest

Flow has very small velocity

During this flow particles will settle at the bottom of the tank

The flow may be either horizontal or vertical direction

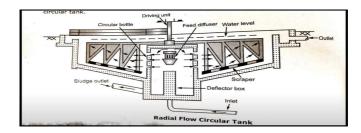
1. Horizontal Flow Tanks


- These tanks may be **rectangular** or circular in plan
- In the design of horizontal flow tanks, the aim is to achieve, as nearly as possible, the ideal
 conditions of equal velocity at all points lying on each vertical line in the settling zone.
 (permissible velocity 0.3m/s)
- The direction of flow in the tank is substantially horizontal.
- They have **more length** (generally twice to width) as water need to flow more distance to settle all suspended particles.

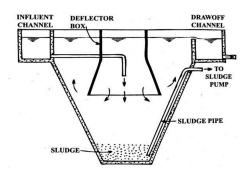
Rectangular Tanks with Longitudinal Flow

Rectangular basins are commonly found in large- scale water treatment plants.

Rectangular tanks are popular as they tend to have:


- High tolerance to shock overload
- Cost effectiveness due to lower construction cost
- Lower maintenance
- Minimal short circuiting

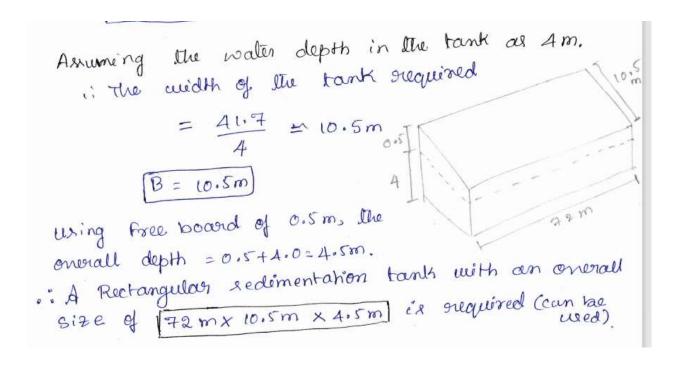
b. Circular tanks with radial flow, with central feed


Circular basins are often referred to as clarifiers.

These basins share some of the performance advantages of the rectangular basins, but are generally more prone to short circuiting and particle removal problems

2. Vertical or up flow settling tanks

- 3. These tanks generally be of circular in shape
- 4. Flow takes place in vertical direction
- 5. Hopper bottom is provided at the bottom of the tank to dispose the sludge collect from the tank.



a. The maximum daily demand at a water purification plant has been estimated as 12 million litres per day. Design the dimensions of a suitable sedimentation tank (Fitted with mechanical sludge removal arrangements) for the raw supplies, assuming a detention period of 6 hours and velocity of flow as 20cm/min. (06 Marks)

```
Daily demand at wTP = Q = 12 × 10 6 / day.

(Quantity of water treated in 24 hours)
solution: ->
        Detention period t = 6 hours.
                   flow velocity = 20 cm/minute.
                  Bimensions of sedimentation trank=?
       Quantity of water to be treated deving the
detention period of 6 hours
\frac{12\times10^6}{24} \times 6 = \frac{3\times10^6 \text{ lines}}{2000 \text{ m}^3} \begin{cases} 1000 \text{ l} \\ 12\text{ m}^3 \end{cases}
 ... The capacity of the trank suggested = 3000 m3
   velocity of flow to be maintained through the
   tank = 20 cm/ minute
             = 0.2 m/minute
    Assuming Rectangular sedimentation touch.
           The length of the tank nearised
               = Velocity of flow x Detention period
             = 0.2 × (6×60)
L = 72m
     Cross-sectional area of the tank required
           = Capacity of the tank

Length of the tank
         = \frac{3000}{72} m^2
A = 41.7 m^2
```


3.

Comparison between Slow Sand Filter and rapid Sand Gravity Filter:

S1.	Item	Slow Sand Filter	Rapid Sand Filter
No.			
1	Pre-	Water from plain	Coagulation, flocculation and
	treatment	sedimentation or raw water	sedimentation is a must.
	required	and should not	
		coagulated water	
2	Filter media	Grain size $(D10) = 0.2$ to 0.4	Grain size $(D10) = 0.35$ to 0.55
		mm, depth of sand bed = 90	mm, depth of sand bed $= 60$ to 90
		to 110 cm	cm
3	Base	Gravel, 30 to 75 cm depth,	Gravel, 60 to 90 cm depth and 3 to
	materia1	size	40
		of gravel is 3 to 65 mm	mm size.

4	Under	Laid in order to receive	Laid in order to receive filtered
	drainage	filtered water	water
	system		and also to pass water for
			backwashing at a very high rate.
5	Size of each	Large, plan area – 100 to	Small, plan area $-$ 10 to 80 m 2 .
	unit	2000	***************************************
		m^2 .	
6	Rate of	Small, 100 to 200 l/hr/m ² of	Large, 3000 to 6000 1/hr/m ² of
	filtration		filter
			area
7	Economy	High initial cost of both land	Low initial cost, but higher cost of
		and materials, but low cost of	operation and maintenance. Over
		operation and maintenance	all, it is cheaper and economical
8	Efficiency	Very efficient in removing	Less efficient in removing bacteria
		bacteria (98 to 99%) but less	(80 to 90 %) but very efficient in
		efficient in removing colour	removing colour.

	1		
9	Flexibility	Not flexible for meeting	Quite flexible for meeting
		variation in demand	reasonable
			variations in demand
10	Suitability	Adopted for treating smaller	They are widely and almost
	and	village supplies or for	universally adopted for treating
	adaptability	individual industrial supplies	public supplies.
11	Post	Almost pure water is	Disinfection is must
	treatment	obtained	
12	Skilled	Not required	Essential
	supervision		
13	Loss of filter	Approximately 10 cm	Approximately 0.3 m
	head		
14	Method of	Scrapping and removing the	Agitating the sand grains and
	cleaning	top	backwashing with or without
		1.5 to 3 cm layer, labours	compressed air, it is a short and
		required	easy
			method

4. **Coagulation** is a chemical technique which is directed towards the destabilization of the charged colloidal particles.

```
Determine the quantity of alum, required in order to treat 13 million phitoes of water per day at a treatment plant, where 12ppm of alum dose is required. Also determine amount of carbon dioxide gas which will be released per like of water breated.

Solution: - Quantity of water to be breated = 13×10<sup>6</sup> Jld.

Alum dose required = 12ppm ie., 12mglt

Alum dose required = 12ppm ie., 12mglt

: Amount of alum stepd. perday = (13×10<sup>6</sup> × 12)mg

= 156 kg

The chemical reaction which is involved in treating water with alum is given by

Al<sub>2</sub> (50<sub>A</sub>)<sub>3</sub>·18H<sub>2</sub>0 + Ca (HCO<sub>3</sub>)<sub>2</sub> → 2AL (OH)<sub>3</sub>Jr +

3 caSO<sub>4</sub> + 18H<sub>2</sub>0 + 6 co<sub>2</sub>1
```

```
Now, The molecular mass of alum (N3(50A)3 12130)

= 2(26.97) + 3(32.066 + 4\times16) + 18(2\times1.008 + 16)

= 666.426
\approx 666

The molecular mass of carbon divide (603)

= 6(12.01 + 2(16))
\approx 264.

∴ 666 mg of alum, if used, will release 264 mg of carbon divide.

∴ 12 mg of alum will release

=> \frac{264}{666} \times 12
= 4.76 mg of Co_2.
```

6. The removal of hardness from water is known as water softening.

The advantages of softening of water are;

Reduces the soap consumption

Lowered cost in maintaining plumbing fixtures and improved taste of food preparations For the industrial supplies, the softening is more important, because hard water causes scaling troubles in boilers and interferes in working with dyeing system.

i) Lime-Soda Process

in this process, lime (Ca(OH)₂) and soda ash (Na₂CO₃) are added to raw water, which react with calcium and magnesium salts, so as to form insoluble precipitates of calcium carbonate and magnesium hydroxide (Mg(OH)₂). These precipitates can be settled in the settling tank.

The chemical reactions which are involved are;

$$Ca(HCO_3)_2 + Ca(OH)_2 \longrightarrow 2CaCO_3 + 2H_2O$$

$$(Insoluble ppt)$$

$$Mg(HCO_3)_2 + Ca(OH)_2 \longrightarrow 8a(HCO_3)_2 + Mg(OH)_2$$

$$(Insoluble ppt)$$

$$MgCO_3 + Ca(OH)_2 \longrightarrow Mg(OH)_2 + CaCO_3$$

$$(Insoluble ppt) \qquad (Insoluble ppt)$$

$$MgCl_2 + Ca(OH)_2 \longrightarrow Mg(OH)_2 + CaCl_2$$

$$(Non-Carbonate hardness of Mg) \qquad (Non-Carbonate hardness of Ca)$$

$$MgSO_4 + Ca(OH)_2 \longrightarrow Mg(OH)_2 + CaSO_4$$

$$(Non-Carbonate hardness of Ca)$$

$$CaCl_2 + Na_2CO_3 \longrightarrow CaCO_3 + 2NaCl$$

$$(Sodium salts)$$

$$CaSO_4 + Na_2CO_3 \longrightarrow CaCO_3 + Na_2SO_4$$

From the above reactions shows that, lime helps in removing the entire carbonate hardness of Ca and Mg and it reacts with non-carbonate hardness of Ca. then the non-carbonate hardness of Ca is finally removed by soda.

The sodium salts which are finally formed are soluble in water, but are generally not objectionable in the amounts resulting from the softening process.

Most of the calcium carbonate and magnesium hydroxide which is formed gets precipitated and can be sedimented in the settling tank.

However a little quantity of calcium carbonate and magnesium hydroxide may remain as finely divided particles, and may cause troubles by getting deposited on the filter to cause enlargement

of the sand grains called incrustation of filter media or in the pipes of the distribution system. To prevent this, water is to be recarbonated by passing carbon dioxide gas through it, as it leaves the sedimentation tank. In the recarbonation process, the insoluble carbonates combine with the carbon dioxide to again form the soluble bicarbonates, as given below:

The carbon dioxide gas to be blown in water can be produced by burning coke, gas or oil. By the recarbonation process, even though the water regains some of its hardness, yet recarbonation is advisable.