

Internal Assessment Test 3–June-2022 (Academic Year 2021-22-Even)

(Solution and Scheme of Valuation)

	(Solution and Scheme of V	<u>/aluatio</u> r	1)			
Sub:	Pavement Design St	ubCode:	18CV825/17CV833/ 15CV833	Branch:	Civil	
Date:	18/6/2022 Duration: 90min MaxMarks: 50 S	Sem/Sec:	VIII– C			
1	Define the following with figures and formula where ever appliance a. Westergaard's stress equation b. Modified stress equations	icable Tension at	σ _ε . Τορ			
	Concrete Pavement slab Figure: Critical stress	locations				
	Westergaard's stress equation					
	Interior loading, $Si=rac{0.316P}{h^2}\Big[4log_{10}\Big[rac{l}{b}\Big]+1.069\Big]$ Edge loading, $Se=rac{0.572P}{h^2}\Big[4log_{10}\Big[rac{l}{b}\Big]+0.359\Big]$			7.5	CO3	L2
	Corner loading, $Sc = \frac{3P}{h^2} \left[1 - \left(\frac{a\sqrt{2}}{l} \right)^{0.6} \right]$ b) Modified stress equations		pading will occur $ance ext{ of } 2.58\sqrt{al}$			
	Teller and Sutherland's modification for edge load stress					
	Edge loading, $Se=rac{0.529P}{h^2}[1+0.54\mu]\Big[4log_{10}\Big[rac{l}{b}\Big]+log_{10}b-0.404b\Big]$ Kelly's modification for corner stress	8]				
	Corner loading, $Sc=rac{3P}{h^2}iggl[1-iggl(rac{a\sqrt{2}}{l}iggr)^{1.2}iggr]$			7.5		
2	Compute the radius of relative thickness of 15 cm thick con	crete slab	using the following			
	data: Modulus of elasticity of $cc = 2.1 \times 10^5 \text{ kg/cm}^2$ Poisson's ratio of concrete = 0.15 Modulus of subgrade reaction, k (a) 3 kg/cm ³ (
	$l = \left[\frac{Eh^3}{12k(1-\mu^2)}\right]^{1/4}$				CO3	L3

(a) 3 kg/cm^3 $l = \left[\frac{2.1 \times 10^5 \times 15^3}{12 \times 3(1 - 0.15^2)} \right]^{1/4}$ $l = 66.99 \text{ cm}$ (b) 7.5 kg/cm^3 $l = \left[\frac{2.1 \times 10^5 \times 15^3}{12 \times 7.5(1 - 0.15^2)} \right]^{1/4}$		5		
Compute the equivalent radius of resisting section of 20 cm thick concrete radius of contact area wheel load is 15 cm. $b = \sqrt{1.6a^2 + h^2} - 0.675h \qquad for \ a \le 1.724 \ h$ $b = a \qquad for \ a > 1.724 \ h$ $a/h = 15/20 = 0.75 < 1.724$ $b = \sqrt{1.6 \times 15^2 + 20^2} - 0.675 \times 20 = 14.07 \ cm$	e slab given that the	10	CO3	L3
f = 1	of friction between reight of concrete is	15	CO3	L3