USì	N									CHE PROTECTION OF THE PROPERTY	MRIT
			Internal	Assessment 7	Test I)2.2.			ACCREDITED WITH A+	GRADE BY NAAC
Sub	Design of Pre	estressed co				Sub Code:	18CV81/ 17CV82	Branc	ch: Civ	il Eng	g
Date:	17.06.2022	Duration:	90 min's	Max Marks:	50	Sem/Sec :	8 th sem	/All sec	ctions	OE	BE
									MARKS	СО	RBT
1.	$= (0.45 \times 4)$ $= 1518 \text{ mm}$ $A_{pw} = (4000 - 1)$ $Ratio \left(\frac{A_{pw}}{b_{w}}\right)$ • STEP 2 • Use table 11 $Assumption$ • STEP 3 Find flexur $M_{u} = f_{pb}A_{pw}(d - 0.4)$ $= (1322 \times 2482)$	0 mm wide a of 4000 mm ses in steel a I/mm^2 and f_{ij} by I/mm^2 and $I/mm^$	× 1800 mm d m ² and is local fter all losses $f_0 = 1600 \text{ N/m}$	the following values $= 0.95 \text{ and } \left(\frac{x_u}{d}\right) = 0.$	thick etive of and he ult	ness 150 m depth of 160 effective sprimate flexur $A_{ps} = 4000 \text{ m}$	m . The high of mm. The an of girder is al strength of	s 24	[10]	CO3	L3
2.	A precast preter The width and of tendons of cross the characteristi calculate the fle Given data: fck = 40 bw = 300 mm • STEP 1	lepth of the s-sectional a c strength o xural streng	rib are 300 ar rea 4700 mm f concrete and th of the T-se	nd 1500 mm, r ² are located a d steel are 40 a ection using In	espect t an e and 10 dian S	tively. The last of the feetive depth of the feetive depth of the feeting of the	nigh tensile st th of 1600 mi respectively, de provisions	n. If	[10]	CO2	L3

Assume $x_u < D_f$, then put $b = b_f$ find $\frac{A_{ps} \times f_{pu}}{b_f \times d \times f_{ck}} = \frac{4700 \times 1600}{1200 \times 1600 \times 40} = 0.097$		
Find $\frac{x_u}{d}$ through interpolation using Table 11, Page 51 corresponding to $\frac{A_{ps} \times f_{pu}}{b_f \times d \times f_{ck}} = 0.1$, $\frac{x_u}{d} \approx 0.217$		
$x_u \approx 0.217 \times 1600 \approx 347.2 \text{ mm}$		
But $x_u > D_f$, so assumption is wrong.		
STEP 2		
Recalculate effective reinforcement ratio, by putting the values of b_w and A_{pw} in $\frac{A_{pw} \times f_{pu}}{b_w \times d \times f_{ck}}$		
$A_{\rm p} = (A_{\rm pw} + A_{\rm pf})$		
and $A_{\rm pf} = 0.45 f_{\rm ck} (b - b_{\rm w}) (D_{\rm f}/f_{\rm pu})$		
$= (0.45 \times 40)(1200 - 300) \left(\frac{150}{1600}\right)$		
$=1518\mathrm{mm}^2$		
$A_{pw} = (4700 - 1518) = 3182 \text{ mm}^2$		
Hence, the ratio $\left(\frac{A_{\text{pw}}.f_{\text{pu}}}{b_{\text{w}}.d.f_{\text{ck}}}\right) = \left(\frac{3182 \times 1600}{300 \times 1600 \times 40}\right) = 0.265$		
From Table 11, the corresponding values are interpolated as,		
$\left(\frac{f_{\rm pb}}{0.87 f_{\rm pu}}\right) = 1.0 \text{ and } \left(\frac{x_u}{d}\right) = 0.56$		
$f_{\rm pb} = (0.87 \times 1600) = 1392 \text{ N/mm}^2 \text{ and } x_{\rm u} = (0.56 \times 1600) = 896 \text{ mm}$		
• STEP 3		
Calculate Moment of resistance or flexural strength of the T-section		
$\left(\frac{f_{\text{pb}}}{0.87 f_{\text{pu}}}\right) = 1.0 \text{ and } \left(\frac{x_u}{d}\right) = 0.56$		
$f_{\rm pb} = (0.87 \times 1600) = 1392 \text{ N/mm}^2 \text{ and } x_{\rm u} = (0.56 \times 1600) = 896 \text{ mm}$		
$M_{\rm u} = f_{\rm pb} A_{\rm pw} (d - 0.42 x_{\rm u}) + 0.45 f_{\rm ck} (b - b_{\rm w}) D_{\rm f} (d - 0.5 D_{\rm f})$		
$= (1392 \times 3182)(1600 - 0.42 \times 896) + (0.45 \times 40(1200 - 300)150(1600 - 0.5 \times 150)$		
$= [(5420 \times 10^6) + (3705 \times 10^6)]$		
$= (9125 \times 10^6) \text{ N mm}$		
=9125 kNm		
A prestressed girder has to be designed to cover a span of 12 m, to support an uniformly	CO2	L3
distributed live load of 15 kN/m. M-45 Grade concrete is used for casting the girder. The		
permissible stress in compression under transfer may be assumed as 14 N/mm2 and 1.4		
N/mm2 in tension under transfer and service load conditions. Assume 15 per cent losses in		
prestress during service load conditions.		

The preliminary section proposed for the girder consists of a symmetrical I-section with flanges 300 mm wide and 150 mm thick. The web is 120 mm wide by 450 mm deep.

(a) Check the adequacy of the section provided to resist the service loads.

(b) Design the minimum prestressing force and the corresponding eccentricity for the section.

Solution.

$$L = 12 \text{ m}$$
 Loss ratio = $\eta = 0.85$
 $f_{ct} = 14 \text{ N/mm}^2$ $f_{tt} = f_{tw} = -1.4 \text{ N/mm}^2$
 $q = 15 \text{ kN/m}$ $y = y_t = y_b = 375 \text{ mm}$

Area of section = $A = [(2 \times 200 \times 150) + (120 \times 450)] = 144000 \text{ mm}^2$

Section moment of area =
$$I = \left[\frac{300 \times 750^3}{12} - \frac{180 \times 450^3}{12}\right] = (918 \times 10^7) \text{ mm}^4$$

Section modulus = $Z = Z_t = Z_b = \left[\frac{I}{y}\right] = \left[\frac{(918 \times 10^7)}{375}\right] = (24.48 \times 10^6) \text{ mm}^3$

Section modulus =
$$Z = Z_t = Z_b = \left[\frac{I}{y}\right] = \left[\frac{(918 \times 10^7)}{375}\right] = (24.48 \times 10^6) \text{ mm}^3$$

Self-weight of girder = $g = \left[\frac{144000}{10^6}\right] 24 = 3.456 \text{ kN/m}$			
Dead-load moment = $M_g = \left[\frac{gL^2}{8} \right] = \left[\frac{3.456 \times 12^2}{8} \right] = 62.208 \text{ kN m}$			
Live-load moment = $M_{\rm q} = \left[\frac{qL^2}{8} \right] = \left[\frac{15 \times 12^2}{8} \right] = 270 \text{ kN m}$			
$f_{\rm br} = (\eta f_{\rm ct} - f_{\rm tw}) = [(0.85 \times 14) - (-1.4)] = 13.3 \text{ N/mm}^2$ (a) Check for adequacy of section			
$Z_b \ge \left[\frac{M_{\rm q} + (1 - \eta) M_{\rm g}}{f_{\rm br}} \right] = \left[\frac{(270 \times 10^6) + (1 - 0.85)(62.208 \times 10^6)}{13.3} \right]$			
$= (21 \times 10^6) \text{ mm}^3 > Z_b \text{ provided}$ Hence, the section provided is adequate to resist the loads safely. (b) Minimum prestressing force and corresponding eccentricity			
$f_t = \left[f_{tt} - \frac{M_g}{Z_t} \right] = \left[-1.4 - \frac{(62.208 \times 10^6)}{(24.48 \times 10^6)} \right] = -3.94 \text{ N/mm}^2$			
$f_b = \left[\frac{f_{\text{tw}}}{\eta} + \frac{M_{\text{g}} + M_{\text{q}}}{\eta Z_{\text{b}}} \right] = \left[\frac{-1.4}{0.85} + \frac{(62.208 + 270) \times 10^6}{0.85(24.48 \times 10^6)} \right] = 14.36 \text{ N/mm}^2$			
Prestressing force is computed using the relation			
$P = \left[\frac{A(f_{\rm t}Z_{\rm t} + f_{\rm b}Z_{\rm b})}{(Z_{\rm t} + Z_{\rm b})} \right] = \left[\frac{144000[(-3.94 + 14.36)24.48 \times 10^6]}{(2 \times 24.48 \times 10^6)} \right]$			
= (747.28×10^6) N = 747.28 kN Eccentricity is obtained by the relation			
$e = \left[\frac{Z_1 Z_b (f_b - f_1)}{A (f_1 Z_1 + f_b Z_b)} \right] = \left[\frac{(24.48^2)(10^{12})[14.36 - (-3.94)]}{144000[(-3.94 + 14.36)24.48 \times 10^6]} \right] = 298.5 \text{ mm}$			
A prestressed concrete beam (span = 10 m) of rectangular section 120 mm wide and	[10]	CO3	L3
300 mm deep, is axially prestressed by a cable carrying an effective force			
of 180 kN. The beam supports a total uniformly distributed load of 5 kN/m which			
includes the self-weight of the member. If the prestressing is done using a parabolic			
cable of eccentricity 100 mm at the centre of the beam. Calculate the magnitude of			
principal tension developed in the beam for both straight and parabolic profile of			
cable and compare the results. $A = 120 \times 300 = 36 \times 10^3 \text{ mm}^2$			
P = 180 kN			
Total load, $w = 5 \text{ kN/m}$			
L = 10m			
• Max shear stress developed in a rectangular beam $\tau_{max} = \frac{3 \times V}{2}$			
Max S F @ supports , $V = \frac{wL}{2} = \frac{50 \times 10}{2} = 25 \text{ kN}$			
Max Shear stress $\tau_{vmax} = \frac{\frac{2}{3 \times 25 \times 10^3}}{2 \times 120 \times 300} = 1.042 \text{ N/mm}^2$			
i) with Prestress			
$f_{\max} = \left[\left(\frac{f_{x} + f_{y}}{2} \right) \pm \frac{1}{2} \sqrt{(f_{x} - f_{y})^{2} + 4\tau_{y}^{2}} \right]$			
where f_x and f_y are the direct stresses and τ_y , is the shear stress acting at the point.			
Axial prestress $f_x = \frac{180 \times 10^3}{120 \times 300} = 5 \text{ N/mm}^2$			
$f_{max,min} = \frac{5}{2} \pm \frac{1}{2} \sqrt{(5^2 + 4 \times 1.042^2)}$			
$= 2.5 \pm 2.71$			
$f_{max} = 5.21 \text{ N/mm}^2 \text{ (compression)}$			
$f_{min} = -0.21 \text{ N/mm}^2$			
Principal tension = f_{min} = - 0.21 N/mm ²			
		1	

$f_{\max} = \left[\left(\frac{f_{\mathbf{x}} + f_{\mathbf{y}}}{2} \right) \pm \frac{1}{2} \sqrt{(f_{\mathbf{x}} - f_{\mathbf{y}})^2 + 4\tau_{\mathbf{v}}^2} \right]$			
where f_x and f_y are the direct stresses and τ_y , is the shear stress acting at the point.			
Axial prestress $f_x = f_y = 0$			
$f_{max,min} = 0 \pm \frac{1}{2} \sqrt{((0^2) + 4 \times 1.042^2)}$			
$= \pm 1.042 \text{ N/mm}^2$			
Principal tension = f_{min} = -1.042 N/mm ²			
Since with the actual prestress, principal tension is reduced to 1.042 N/mm ² to 0.21 N/mm ²			
ie $\frac{1.042 - 0.21}{1.042} \times 100 = 79.85 \%$			
Calculation of slope of the cable			
Calculation of slope at support $y = \frac{4 \times e}{L^2} (Lx - x^2)$			
J. A			
$\frac{dy}{dx} = \frac{4 \times e}{L^2} (L - 2x)$			
At support $x = 0$, $\theta = \frac{dy}{dx} = \frac{4 \times e}{L} = \frac{4 \times 100}{10000} = \frac{1}{25}$ radians			
$\theta \text{ in degrees} = \frac{1}{25} \times \frac{180}{\pi} = 2.292^{\circ}$			
Vertical component of prestressing force = $P \times \sin 2.29 = 180 \times \sin 2.29 = 7.2 \text{ kN}$			
Horizontal component of prestressing force = $P \times \cos 2.29 = 180 \times \cos 2.29 = 179.8 \text{ kN}$			
Net vertical shear force acting on the section will be $V = 25 - 7.2 = 17.8kN$			
Max Shear stress $\tau_{vmax} = \frac{3 \times 17.8 \times 10^3}{2 \times 120 \times 300} = 0.742 \text{ N/mm}^2$			
$2 \times 120 \times 300$ 180×10^{3} 5×1			
Axial prestress $f_x = \frac{180 \times 10^3}{120 \times 300} = 5 \text{ N/mm}^2$			
$f_{\max}_{\min} = \left[\left(\frac{f_{x} + f_{y}}{2} \right) \pm \frac{1}{2} \sqrt{(f_{x} - f_{y})^{2} + 4\tau_{y}^{2}} \right]$			
$f_{max,min} = \frac{5}{2} \pm \frac{1}{2} \sqrt{(5^2 + 4 \times 0.742^2)}$			
$=2.5\pm2.61$			
$f_{max} = 5.11 \text{ N/mm}^2 \text{ (compression)}$			
f_{min} = - 0.11 N/mm ² Principal tension = f_{min} = - 0.11 N/mm ²			
i) Comparing with axial prestressing			
$\frac{0.211 - 0.11}{0.211} \times 100 = 47.62 \%$			
$\frac{0.211}{0.211} \times 100 = 47.62 \%$ ii) Comparing with without axial prestressing			
$\frac{1.042 - 0.11}{1.042} \times 100 = 89.44\%$			
A beam of symmetrical I section with flanges 450 x 150 mm and the web thickness	[10]	CO2]
150 mm, the overall depth of the beam 1000 mm span of the beam is 20 m. The cable			
is parabolic with zero eccentricity at supports and max eccentricity of 300 mm at mid-			
span. The effective prestressing force 1250 kN. Live load = 20 kN. Determine the principal tension at the support section and at the junction of web and flange.			
Solution:-			
$Ac = 150 \times 450 + 150 \times 700 = 240 \times 10^3 \text{ mm}^2$			
$I = \frac{450 \times 1000^3}{12} - \frac{300 \times 700^3}{12} = 2.8975 \times 10^{10} \text{mm}^4$			
$12 \qquad 12 \qquad -2.0973 \times 10^{-11111}$			

Calculation of slope at support
$$y = \frac{4 \times e}{L^2} (Lx - x^2)$$

$$\frac{dy}{dx} = \frac{4 \times e}{L^2} (L - 2x)$$

At support x =0,
$$\theta = \frac{dy}{dx} = \frac{4 \times e}{L} = \frac{4 \times 300}{20000} = 0.06$$
 radians θ in degrees = 0.06 $\times \frac{180}{\pi} = 3.42^{\circ}$

$$\theta$$
 in degrees = 0.06 $\times \frac{180}{\pi} = 3.42^{\circ}$

self weight =
$$25 \times .024 = 5.76 \text{ kN/m}$$

Vertical component of prestressing force = P x $\sin 3.42 = 1250 \times \sin 3.42 = 1250$

Horizontal component of prestressing force = $P \times \cos 3.42 = 1250 \times \cos 3.42 =$ 74.96 kN

Total load = 25.76 kN/m

Shear force at support due to applied load = $25.76 \times 20 / 2 = 257.6 \text{ kN}$

Net shear force at support section = 257.6 - 74.96 = 182.64 kN

Shear stress

• At centroid

$$\tau = \frac{F \times A \times \bar{y}}{I \times b} = \frac{182640 \times (450 \times 150 \times 425 + 150 \times 350 \times \frac{350}{2})}{2.8975 \times 10^{10} \times 150} , \text{ (taking b = bw)}$$

$$= 1.594 \text{ N/mm}^2$$

At junction of the web

$$\tau = \frac{F \times A \times \bar{y}}{I \times b} = \frac{182640 \times (450 \times 150 \times (500 - \frac{150}{2}))}{2.8975 \times 10^{10} \times 150} , \text{ (taking b = bw)}$$

$$= 1.207 \text{ N/mm}^2$$

At junction of the flange

At junction of the flange
$$\tau = \frac{F \times A \times \bar{y}}{I \times b} = \frac{182640 \times (450 \times 150 \times (500 - \frac{150}{2}))}{2.8975 \times 10^{10} \times 450} , \text{ (taking b = bf)}$$
$$= 0.402 \text{ N/mm}^2$$

1. Principal tension along centrodial axis

$$f_{\max} = \left[\left(\frac{f_{x} + f_{y}}{2} \right) \pm \frac{1}{2} \sqrt{(f_{x} - f_{y})^{2} + 4\tau_{v}^{2}} \right]$$

$$f_{x} = \frac{1250000}{240 \times 1000} = 5.21 \text{ N/mm}^{2}$$

$$f_{max,min} = \frac{5.21}{2} \pm \frac{1}{2} \sqrt{(5.21^2 + 4 \times 1.549^2)}$$

$$= 2.605 \pm 3.504$$

$$f_{max} = 2.605 + 3.504 = + 5.6 \text{ N/mm}^2 \text{ (compression)}$$

$$f_{min} = 2.605 - 3.504 = -0.449 \text{ N/mm}^2 \text{ (tension)}$$
2. Principal tension at the junction of flange
$$f_{\max} = \left[\left(\frac{f_x + f_y}{2} \right) \pm \frac{1}{2} \sqrt{(f_x - f_y)^2 + 4\tau_v^2} \right]$$

$$f_x = \frac{1250000}{240 \times 1000} = 5.21 \text{ N/mm}^2$$

$$f_{\max,min} = \frac{5.21}{2} \pm \frac{1}{2} \sqrt{(5.21^2 + 4 \times 0.402^2)}$$

$$= 2.605 \pm 2.63$$

$$f_{\max} = 2.605 + 2.63 = + 5.24 \text{ N/mm}^2 \text{ (compression)}$$

$$f_{\min} = 2.605 - 2.63 = -0.031 \text{ N/mm}^2 \text{ (tension)}$$
3. Principal tension at the junction of web
$$f_{\max} = \left[\left(\frac{f_x + f_y}{2} \right) \pm \frac{1}{2} \sqrt{(f_x - f_y)^2 + 4\tau_v^2} \right]$$

$$f_x = \frac{1250000}{240 \times 1000} = 5.21 \text{ N/mm}^2$$

$$f_{max,min} = \frac{5.21}{2} \pm \frac{1}{2} \sqrt{(5.21^2 + 4 \times 1.207^2)}$$

= 2.605 ± 2.87
 $f_{max} = 2.605 + 2.87 = +5.47 \text{ N/mm}^2 \text{ (compression)}$
 $f_{min} = 2.605 - 2.87 = -0.266 \text{ N/mm}^2 \text{ (tension)}$