

Module 1

1a)

Advantages & Disadvantages of Steel Structures:

Advantages of Steel Structures:

- They are **super-quick** to build at the site, as a lot of work can be pre-fabbed at the factory.
- **Ease in expansion** of the structure.
- **Ease in repair** & rehabilitation or retrofitting.
- **Faster erection** of the structure.
- They are **flexible**, which makes them very good at resisting dynamic (changing) forces such as wind or earthquake forces. It can bend without cracking, which acts as a warning in seismic zones.
- A wide range of **ready-made structural sections** is available, such as I, C and angle sections.
- They can be made to take any kind of **shape** and clad with any type of
- A wide range of **joining methods** is available, such as bolting, welding, and riveting.
- Steel can be recycled. (New steel made from scrapped steel uses about one-third of the energy necessary for steel from virgin materials)

Disadvantages of Steel Structures:

- Analysis approach and assumptions should be quite clear and definitive prior to structural system formation.
- Time required to **design connection** is more as compared to RC structures connection.
- **Cost** (especially in India) is high for structural steel compared to RC.
- **Skilled laborers** are required.
- Steel can soften and melt with exposure to extremely high temperatures. However, with the addition of passive fire protection, such as spray-on fireproofing, buildings built of structural steel can sustain greater temperatures and therefore, provide additional safety.
- They are prone to **corrosion** in humid or marine environments. Therefore, they need consistent maintenance.
- •

1 b)

A Civil Engineering Designer has to ensure that the structures and facilities he designs are (i) fit for their purpose (ii) safe and (iii) economical and durable. Thus safety is one of the paramount responsibilities of the designer. However, it is difficult to assess at the design stage how safe a proposed design will actually be. There is, in fact, a great deal of uncertainty about the many factors, which influence both safety and economy. The uncertainties affecting the safety of a structure are due to

- · Uncertainty about loading
- · Uncertainty about material strength and
- · Uncertainty about structural dimensions and behaviour.

These uncertainties together make it impossible for a designer to guarantee that a structure will be absolutely safe. All that the designer can ensure is that the risk of failure is extremely small, despite the uncertainties.

An illustration of the statistical meaning of safety is given in Fig.2.1. Let us consider a structural component (say, a beam) designed to carry a given nominal load. Bending moments (B.M.) produced by loads are first computed. These are to be

compared with the resistance or strength (R.M.) of the beam. But the resistance (R.M.) itself is not a fixed quantity, due to variations in material strengths that might occur between nominally same elements. The statistical distribution of these member strengths (or resistances) will be as sketched in (a).

Similarly, the variation in the maximum loads and therefore load effects (such as bending moment) which different structural elements (all nominally the same) might encounter in their service life would have a distribution shown in (b). *The uncertainty here is both due to variability of the loads applied to the structure, and also due to the variability of the load distribution through the structure.* Thus, if a

particularly weak structural component is subjected to a heavy load which exceeds the strength of the structural component, clearly failure could occur.

Unfortunately it is not practicable to define the probability distributions of loads and strengths, as it will involve hundreds of tests on samples of components. Normal design calculations are made using a single value for each load and for each material property and taking an appropriate safety factor in the design calculations. The single value used is termed as *"Characteristic Strength or Resistance"* and

"Characteristic Load".

Characteristic resistance of a material (such as Concrete or Steel) is defined as that value of resistance below which not more than a prescribed percentage of test results may be expected to fall. (For example the characteristic yield stress of steel is usually defined as that value of yield stress below which not more than 5% of the test values may be expected to fall). In other words, this strength is expected to be exceeded by 95% of the cases.

Similarly, *the characteristic load is that value of the load, which has an accepted probability of not being exceeded during the life span of the structure.* Characteristic load is therefore that load which will not be exceeded 95% of the time

Shape factor of various cross sections (conti.)

• Ex 3 Determine the shape factor for a triangular section of base b and height h as shown below.

Triangular section

Shape factor of various cross sections (conti.)

Ex 3 Determine the shape factor for a triangular section of base b and height h as shown below.

Step 1: Calculate moment of inertia about zz axis

$$
I_{z\overline{z}}=\frac{bh^3}{36}
$$

Step 2: Find elastic section modulus

$$
Z_{ZZ} = \frac{I_{ZZ}}{y_{max}} \qquad y_{max} = \frac{2}{3} h
$$

$$
Z_{ZZ} = \frac{bh^2}{24}
$$

 $2a)$

Step 3: Find plastic neutral axis by dividing
into equal area

det DE he fix, plastic neutral axis
\nDE divides
$$
\triangle ABC
$$
 into two equal area
\nlet $\triangle ADE = A_1$
\n $\triangle ECB = A_2$
\n $A = A_1 + A_2$
\nBut $A_1 = A_2$
\nUsing similar things
\n $\frac{h_1}{b_1} = \frac{h}{b} \Rightarrow \frac{h_1 = bh_1}{h}$
\n $A_1 = \frac{A}{2}$
\n $\frac{1}{2}bh_1 = (\frac{1}{2}bh) = \frac{1}{4}bh$
\nSubstit be, $= \frac{bh_1}{h}$
\n $\frac{1}{2} \times \frac{h}{h_1} \times h_1 = \frac{1}{4}h$
\n $h_1^2 = \frac{h^2}{a} \Rightarrow \frac{h_1 = h_1}{h_2}$

Step 4: Find plastic section modulus (Zp)

$$
Z_{p} = \mathcal{Z}(A; y_{i})
$$
\n
$$
A_{i} = \frac{1}{2} \frac{b_{1}}{\sqrt{2} \sqrt{2}} \qquad y_{i} = \frac{(b_{1}/c_{2})}{3} \qquad A_{i}y_{i} = \frac{b_{1}h^{2}}{12\sqrt{2}}
$$
\n
$$
= \frac{b_{1}h}{4}
$$
\n
$$
A_{2} = \frac{1}{2} \times 0.146456 \qquad J_{2} = \frac{2}{3} \times 0.2929h \qquad A_{2}y_{2} = \frac{b_{1}h^{2}}{288.79}
$$
\n
$$
= 0.0214466bh
$$
\n
$$
A_{3} = \frac{b}{\sqrt{2}} \times 0.2727h \qquad J_{3} = 0.2929h \qquad A_{3}y_{3} = \frac{b_{1}h^{2}}{28.79}
$$
\n
$$
A_{4} = 0.0214466bh
$$
\n
$$
A_{5} = \frac{b}{\sqrt{2}} \times 0.2727h \qquad J_{3} = 0.2929h \qquad A_{3}y_{3} = \frac{b_{1}h^{2}}{28.79}
$$
\n
$$
A_{4} = 0.0214466bh
$$
\n
$$
A_{4} = 0.0214466bh
$$
\n
$$
A_{4} = 0.0214466bh
$$
\n
$$
A_{4} = 0.195267h
$$
\n
$$
A_{4}y_{4} = \frac{b_{1}h^{2}}{28.79}
$$
\n
$$
A_{5} = \frac{b_{1}h^{2}}{28.79}
$$
\n
$$
A_{6} = \frac{b_{1}h^{2}}{28.79}
$$
\n
$$
A_{7} = \frac{b_{1}h^{2}}{28.79}
$$
\n
$$
A_{8} = \frac{b_{1}h^{2}}{28.79}
$$
\n
$$
A_{9} = \frac{b_{1}h^{2}}{28.79}
$$
\n
$$
A_{1} = 0.0214466bh
$$
\n<math display="block</math>

2b)

2b)

 CS

Scanned with CamScanner

Module 2

3a) Behaviour of bolted joints:

- 1. Shear failure of bolt
- 2. Shear failure of plate
- 3. Bearing failure of bolt
- 4. Bearing failure of plate
- 5. Tensile failure of bolt
- 6. Tensile failure of plate

Terminologies

Pitch of the bolt (p): c/c spacing of the bolt in a row, measured along the direction of load

Gauge distance(g): C/C b/w 2 consecutive bolts of adjacent row, measured perpendicular to load

Edge distance(e): distance from bolt to edge of the plate

Shear connection with bearing type of bolt: page 74 of IS 800: 2007, clause 10.3

- 1. Force transfer of bearing type of bolt -
- 2. Design shear strength of bearing type of bolt failure at bolt and failure at plate
	- a. Yielding takes place at the net section of the plate under combined tension and flexure
	- b. Shearing takes place in bolt in shear plane
- c. Failure of bolt takes place in bearing
- d. Failure of plate takes place in bearing
- e. Block shear failure

3b) Solution:

a) Lap joint

Strength of bolt in single shear: (assume fully threaded bolt)

$$
V_{dsb} = \frac{f_{ub}}{\sqrt{3}} (n_n A_{nb} + n_s A_{sb}) / \gamma_{mb}
$$

= $\frac{400}{\sqrt{3}} (1 * 0.78 * pi * 16 * 16/4 + 0) / 1.25 = 56.58 \text{kN}$

Bolts in Bearing = $V_{db} = (2.5K_b dt f_u)/\gamma_{mb}$

 K_b *is least of e/3d_o, p/3d_o-0.25, fub/fu, 1 from the IS 800:2007 pg no 75*

Assumed e=40mm, $p=50$ mm, $d_0=20+2=22$ mm $40/3*22=0.60$ $50/3*18-0.25=0.50$ 400/410= 0.97 1

Vdpb = (2.5**0.50*16*12*410)/ 1.25 = 98.40kN*

4a)

Advantages of welding

- Welding will enable direct transfer of stress between members eliminating gusset and splice plates necessary for bolted structures. Hence, the weight of the joint is minimum.
- When we see tension members, the absence of holes improves the efficiency of the section.
- It requires less fabrication cost compared to other methods due to handling of less parts and elimination of operations like drilling, punching etc. and consequently less labor leading to economy.
- Welding offers air tight and water tight joining and hence is ideal for oil storage tanks, ships etc.
- Welded structures also have a neat appearance and enable the connection of complicated shapes.
- Welded structures are more rigid compared to structures with riveted and bolted connections.
- Generally welded joints are as strong as or stronger than the base metal, thereby placing no restriction on the joints. Stress concentration effect is also considerably less in a welded connection.

• **Disadvantages of welding**

- It requires skilled manpower for welding as well as inspection.
- Also, non-destructive evaluation may have to be carried out to detect defects in welds.
- Welding in the field may be difficult due to the location or environment.
- Welded joints are highly prone to cracking under fatigue loading.
- Large residual stresses and distortion are developed in welded connections.

4b)

4b) A tie member of a truss consisting of an angle section ISA 65 x 65 x 6 of Fe 410 grade is welded to an 8 mm gusset plate. Design a weld to transmit a load of 150. Assume shop welding.

SP 6

Cl: 6.2, P- 32

Tension capacity of the angle= $T_{dg} = \frac{A_g \times f_y}{\lambda_{g}}$ $\frac{lg \times f_y}{\lambda_{mo}} = \frac{1047 \times 250}{1.1}$ $\frac{1.1}{1.1}$ = 237.95kN

Size of the weld, $D = 34*t = 34*6= 4.5mm$ say $\frac{4mm}{100}$ which is greater than 3mm

Strength of bottom well = p1 = 0.707 * D*1₁ *
$$
\frac{410}{\sqrt{3} * 1.25}
$$

\n
$$
P1 = 0.707 * 4*1_{1} * \frac{410}{\sqrt{3} * 1.25}
$$

\n
$$
P1 = 535.541_{1} \text{ N}
$$

\nStrength of top well = p2 = 0.707 * D*1₂ *
$$
\frac{410}{\sqrt{3} * 1.25}
$$

\n
$$
P2 = 0.707 * 4*1_{1} * \frac{410}{\sqrt{3} * 1.25}
$$

\n
$$
P2 = 535.541_{2}
$$

 $P = P1 + P2$

 $237.954*10^3 = 535.541_1 + 535.541_2$

Distributing weld in such a way that c.g of the weld coincides with that of the angle section.

Taking the moment wrt to one of the force , wrt P2

 $P1*90 = P*65.8$

 $535.54*1₁*90=237.95*65.8$ $l_1 = 237.95*65.8/535.54*90$ $l_1 = 324.84$ mm = 325mm on substituting the l_1 in P1 $P1 = 535.54*325 = 174.050*10³ N$ $P1+P2=P$ $174.05*10^3 + P2 = 237.95*10^3$ $P2= 63.9*10³ N$ Wkt $535.541 = P2$ Therefore = l_2 = 63.9*10³/535.54 = 119.31mm **Effective length of** $11 = 325 + 2 \times 4 = 333$ **mm say 335 mm**

Effective length of $l2 = 120 + 2x4 = 128$ **mm say 130 mm**

Module 3

5a)

- **□ Crushing failure:- This type of failure occur in short column Such member has a critical load cause material failure.**
- **□ Buckling failure :- This type of failure occur in long column**
- **Such member has a critical load which cause elasti instability due to which the member fail.**
- **□□ Mixed mode of failure:- The above two failure occur in the extreme cases. For all intermediate value of slenderness ratio the column fail due to combined effect. Most of th practical column fail in this mode.**
- **Flexural buckling**
- **Torsional Buckling**

Flexural- Torsional Buckling

O.I. Design a "angle strut" using single angle Section to carry a load of 150 km. Use M20 property class 5.6 bolts. the length of the memberg ip 2.5mm.

factored load = 1.5 x150 = 225 keV

\n(a) Assume
$$
\frac{1}{2} \cdot \
$$

5b)

$$
\therefore
$$
 Design Composition $\int_{P=2259 \times 94.6}$
= 213.70 km. \leq 225 km.

flence revise the section Now try JSA 125x95x12mm. $area = 2498 \longrightarrow PQ - 8$ of Steel table $Tmin = 2.01$ cm = 20.1 mm $\lambda = \frac{l \epsilon}{m_{\text{min}}} = \frac{\alpha_1 \alpha_2}{\alpha_0} = 105.7$ $\frac{1}{2}$ id = 99.93 Nlmm⁺ $P = Ae$ fed $= 2498 \times 99.93$ = 249.62 KN $>$ 225 KN. (Saje) b) Connection: M20 property class 5.6 * Assume fread is fouching Shear
Plane (1) In Shear $V_{nsb} = \frac{500}{\sqrt{3}} (1 \times 0.78 \times \sqrt{4} \times 30^{1} + 0)$ $= 70.74 \text{ FAl}$ $V_{db} = \frac{70.74}{1.25}$ = 56.59 KM. (ii) In bearing: $k_b = \frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $p = 2.5 \times 20 = 50$ mm \cdot $K_b = 0.501$ $V_{npb} = 2.5 \times 0.501 \times 20 \times 12 \times 410$ $= 124.72$ KN . Vdpb = $\frac{124.72}{1.25}$ = 99.78 km. \circ \circ \circ \circ Bolt Value = 56.59 km. .. No. of bolls = $\frac{225^{\circ}}{56.59}$ $400.$

Module 4

7a)

Tension yielding : gross sectional yielding

Tension yielding : (IS 800:2007 pg 32)

This failure mode looks at yielding on the gross cross sectional area, A_g .

Consequently, the critical area is located away from the connection as shown.

Strength of the section Tdg= the *gross area*, Ag, times the *minimum yield stress*, Fy, of the member.

 $T_{dg} = f_y A_g / g_{m0}$

Tensile rupture : Net sectional rupture

Tensile rupture : Net section rupture

In this case we have two potential failure paths that see the full force of the member. It is common to have multiple potential failure paths.

Tensile rupture is complicated by the need to get the forces out of the flanges, through the web, and into the bolts.

This means that we need to account for the stress concentrated in and around the bolts. The capacity of each failure path = the *effective net area*, An, times the *tensile stress*, Fu, of the member.

Block shear failure:

Block shear occurs when a "block" of the member is "torn" out.

Block shear is characterized by a failure that includes both tension (i.e. normal to the force) and shear (i.e. parallel to the force) failure planes.

Like tensile rupture, there are frequently multiple valid failure paths that must be investigated.

Each tension area capacity $=$ the tension area (either gross or net) times a tensile stress (yield or ultimate).

Each shear area capacity = the shear area (either gross or net) times a shear stress (yield or ultimate).

7b)

Missing things from previous questions: Size of the section, no and dia of bolt,

Bolted connection:

axial load= 400kN

Tdg =Factored load =1.5*400=900kN

$$
T_{dg} = f_{y} \times A_{g} / \lambda_{m0}
$$

 $A_g = T_{dg} * \lambda_{m0} / f_v = 90 * 1000 * 1.1 / 250 = 396$ mm² = 3.96cm²

*Try ISA 65*45*5 a=5.26=526mm²*

rmin= 0.96cm = 9.6mm

Check for slenderness ratio: P-20 table 3 of IS 800:2007

 $\displaystyle \frac{F = \frac{L_{eff}}{r_{min}}}{1} = \frac{1560}{9.6}$ 9.6 *= 162.5 less than 180 hence good to proceed*

1. Design Yielding Strength *Tdg- (6.2)*

 $T_{dg} = f_y \times A_g / \lambda_{m0}$ ($\lambda_{m0} = 1.10$ from table 5)

 $= 250 \times 526/1.1*1000= 119.5$ kN is greater than 90kN hence safe

Connection details:

Assume 16mm dia bolt

• Strength shear (*assume shank interfere the shear plane of bolts*)

$$
V_{dsb} = \frac{f_{ub}}{\sqrt{3}} (n_n A_{nb} + n_s A_{sb}) / \gamma_{mb}
$$

= $\frac{400}{\sqrt{3}} (0 + 1 * (pi * 16 * 16/4) / 1.25 = 37.14 \text{kN}$

• Bolts in Bearing

 $V_{nsh} = (2.5K_b \, d \, t \, f_u) / \gamma_{msh}$

 K_b *is least of the following e/3d₀, p/3d₀-0.25, fub/fu, 1*

Assuming $p=2.5*d=50$ mm and $e=1.7*d$ o= 40mm

$$
40/3*18 = 0.74
$$

$$
50/3*18-0.25 = 0.68
$$

$$
400/410 = 0.98
$$

$$
1
$$

Vnsb = (2.5**0.68*16*5*400)/1.25*1000= 43.52kN*

No. of bolts = load /bolt value = 90/37.14= 2.42= 3No's

- **2. Design Rupture Strength of Net Area** *Tdn- (6.3.3) since it is an angle (since it is affected by shear lag)*
	- T_{dn} **= 0.9** × A_{nc} × f_u / λ_{m1} + β × A_{go} × f_v / λ_{m0} (λ_{m1} = 1.25) A_{nc} = Net c/s area of the **connected** $leg = ((60-5/2-18) * 5) = 222.5$ mm²

 $A_{go} = Gross$ *c/s* area of the **unconnected** $leg = (45-5/2)$ *5= 212.5mm²

$$
\beta = 1.4 - 0.076 \left(\frac{W}{t}\right) \left(\frac{f_y}{f_u}\right) \left(\frac{b_s}{L_c}\right) \le \left(\frac{f_u}{f_y}\right) \left(\frac{\lambda m0}{\lambda m1}\right) \ge 0.7 \dots \dots \dots \text{pg. 33}
$$
\n
$$
\beta = 1.4 - 0.076 \left(\frac{45}{5}\right) \left(\frac{250}{410}\right) \left(\frac{75}{150}\right) \le \left(\frac{410}{250}\right) \left(\frac{1.1}{1.25}\right) \ge 0.7
$$
\n
$$
= 1.19 \le 1.44 \ge 0.7
$$
\n
$$
b_s = w + w_1 - t = 45 + 35 - 5 = 75 \text{mm}
$$
\n
$$
L_c = 3 * 50 = 150 \text{mm}
$$
\n
$$
T_{dn} = 0.9 \times 222.5 \times 410 / 1.25 + 1.19 \times 212 \times 250 / 1.1 = 123.08 \text{ kN}
$$

3. Design Block Shear Strength *Tdb (6.4.1)*

Tdb1 =[Avg (*fy*/√3) / ƛ*m*0 + 0.9 *Atn f^u* / ƛ*m*1]……………………………pg 33, 6.4.1 *⁼700 (250/√3) / 1.1 + 0.9 105 410/ 1.25 = 122.85kN Tdb2 = [* 0.9 *Avn* (*fu*/√3) / ƛ*m*1 + Atg *f^y* / ƛ*m*0]……………………………pg 33, 6.4.1

=0.9 475 (410/√3) / 1.25 +150 250/ 1.1 =115.05 kN

$$
A_{vg} = L_v * t = 140 * 5 = 700 \text{ mm}^2
$$

\n
$$
A_m = (L_t - nd_o) * t = (30 - 0.5 * 18)5 = 105 \text{ mm}^2
$$

\n
$$
A_{vn} = (L_v - nd_o) * t = (140 - 2.5 * 18) * 5 = 475 \text{ mm}^2
$$

\n
$$
A_{tg} = L_t * t = 30 * 5 = 150 \text{ mm}^2
$$

DESIGN STRENGTH= least of Tdg, Tdn, Tdb1, and Tdb2

*Therefore, Design strength of the angle is 115.05kN is greater than 90kN hence safe to proceed with ISA 65*45*5 as tie member*

1 eng Angle:

lug angles asee short angles used to connect the gueset and Rig of the main member as shown in fig below. outstandling The easy angles help to Encrease the effectional of adstanding leg q angles or channels. They are normally provided when the leg of congus of channels. Only large load. Higher load longer end connection which can be reduced by results en a providing lug angles. It is ideal to place the long angle at providing the angles. It is need to provide position.

GURSET PLATE: - is used to make connections at the plates where more than

Guiser PLATE: - is used to make connections at the platee where more me
one member to to be jointed eq. joints of hues, truss qirder etc.
The line action of huss members meeting at a joint are assumed
to cotincide as shown

to cotrictly as shown about fight are usually dicided from
The size and shape of the quisset plates are usually dicided from
the direction of the members meeting at joint. The plate outlines are
fixed so as to meet the spu

8b)

Solution:

Data:

Axial load= 700kN

Factored load = $1.5*700=1050kN$

Bearing strength of concrete =0.45 f_{ck} = 0.45*20= 9N/mm²

Area of the base plate $=$ $\frac{load}{bearing\ strength\ of\ concrete} = \frac{1050 * 10^3}{9}$ $\frac{9*10^{3}}{9}$ = 116.67*10³ m²

Properties of ISHB 225@46.8 kg/m

From the sp 6.

 $h = 225$ mm

 $b = 225$ mm

 $t_f = 9.1$ mm

overall dimension of the column is square: let is design a square base plate

8a)

Sides of the base plate = $\sqrt{116.67 \times 10^3}$ = 341.56mm rounding up= 350mm

Since we are providing the cleat angles we shall increase the dimension by 10mm. then the size of the base plate = 360mm*360mm

Projection beyond the column = $360-225/2= 67.5$ mm

Net upward pressure 'w'= $\frac{load}{Area\ of\ the\ base\ plate}$ = $\frac{1050*1000}{360*360}$ $\frac{350*1000}{360*360} = 8.10 M/mm2 < 9N/m$ mm2 hence safe to proceed with the section

Thickness of the base plate: IS 800:2007, P 47 clas 7.4.31.

$$
t_s = \sqrt{\frac{2.5 \, w(a^2 - 0.3b^2)\gamma_{mo}}{f_y}}
$$

 $t_s = \sqrt{\frac{2.5 * 8.1(67.5^2 - 0.3 * 67.8^2)1.1}{250}}$ $\frac{250}{250}$ = 16.06mm so let us round it up to 18mm

Provide the base plate of dimension 360*360*18mm

Design of bolt:

No of bolt= $\frac{load}{bolt value}$ =

Bolt value = least of Vdsb and Vdpb from pag 75 of IS $800:2007$

P= 50mm, e=45mm, d=20mm, assume the bolt's shear plane is intersecting the shank.

• Strength shear (*assume shank interfere the shear plane of bolts*)

$$
V_{dsb} = \frac{f_{ub}}{\sqrt{3}} (n_n A_{nb} + n_s A_{sb}) / \gamma_{mb}
$$

= $\frac{400}{\sqrt{3}} (0 + 1 * (pi * 20 * 20/4) / 1.25 = 58.03 \text{kN}$

• Bolts in Bearing

 $V_{nsb} = (2.5K_b d t f_u)/γ_{mbs}$

 K_b *is least of the following e/3d₀, p/3d₀-0.25, f_{ub}/f_u, 1*

Assuming p=50mm and e= 45mm

$$
45/3*22 = 0.68
$$

$$
50/3*22-0.25 = 0.50
$$

$$
400/410 = 0.97
$$

$$
1
$$

$$
V_{nsb} = (2.5 * 0.50 * 20 * 9.1 * 400) / 1.25 * 1000 = 72.8 kN
$$

No of bolt= $\frac{262.5}{58.03}$ = 4.52 = 5no's =

Total load on the column $= 1050kN$.

Therefore, on each cleat angle the load will be= $1050/4= 262.5kN$

Cleat angle: Take cleat angle of ISA 100*100*10mm to secure the column with the base plate by 5 bolts of 20mm dia

Concrete bed block:

Axial load= 700kN

Self weight of the concrete= 10% of the load= $0.1*700=70kN$

Therefore the total load on the concrete bed block= 770kN

Area = $load/stress = 770/180 = 4.28m²$

Side of the concrete block = $\sqrt{4.28}$ = = 2.06m = 2.1m

Thickness of the block

Depth of the concrete block= projection of concrete beyond base plate $=$

 $=2100-360/2= 870$ mm = 900mm

Now the size of the concrete bed block= 2.1*2.1*0.9m

Module 5

9a)

Factors affecting lateral stability

Type of C/S - The lateral buckling strength can be improved by choosing an appropriate c/s where IYY is large. Box sections satisfies this and also has large torsional rigidity as it is a closed section. Open sections like I sections have low torsional rigidity and are more susceptible to lateral instability. Cl 8.2.2 pp - 54 mentions that hollow sections need not be checked for lateral buckling strength.

Support conditions - The lateral restraint provided depends on the restraint provided by the supports. The effect of various support conditions is taken into account using the concept of effective length as given in Table 15 - pp 58 for simply supported beams and Table 16 - pp 61 for cantilever beams.

Effective length - This concept incorporates the various types of restraints to the flanges and for simply supported beams Table 15 - pp 58 can be used. The same information for cantilever beams is given in Table 16 - pp 61.

Beams without proper restraint of the compression flange undergoes lateral

buckling resulting in lesser load carrying capacity.

Design strength of laterally supported and unsupported beams

These are analysis problems where the strength of the beam is required. The design strength will be based on flexural or bending strength and shear strength. Bending strength of laterally supported beams are calculated using the provisions given 8.2.1.2 (pp -53) by knowing the plastic section modulus Zpz Bending strength of laterally unsupported beams are calculated using the provisions given 8.2.2 and 8.2.2.1 (pp -54) by knowing the plastic section modulus Zpz The shear strength of the c/s is obtained from cl. 8.4(pp -59).

$a = (h-2t)$

- * Factors effecting lateral stability:
	- * Jype of cls The lateral buckling shingth can be improved by choosing an appropriate c/s where Iyy is large. Box sections closed Section. Open Sections like I-Section have low torsconal rigidity and are more susciptible to lateral instability, cl-8.2.2 pp.54 mentions that hollows sections need not be checked for latival buckling ahingth.
	- * Support conditions: The lateral mahaint proceeded depends on the suchaint proceed by the support. The effect of various support conditions to take the account using the concept of effective length as glaup in table 15 -pp -58 for simply supported beams and table 16 - pp 61 for cantilever beam: How supported bed
and table 16 - pp 61 for cantilever beam: How sund a sunder
	- * Effective length? This concept incorporates the various types of Motor complete the theoretical the largest of the lating types of The delayers and you simply supported beam of Jable 15
PNO-58 Can be used. The same importation for cartilever beams
It gium in Table 16, pno- 61. 15 giuen in Pable 16 , prio- 61.

Beams without proper restraint of the compression flamps undugors lateral buckling resulting in loser load carrying Capacity.

PROBLEMS: 81. Simply supported Beam ISMB 350 @ 524 Nolm. is used over a span of 5m. The beam carries an UDL live load 20 KN/m. & DL 15 kw/m. The beam is laterally supported through out " Check the safety of beam" 125x 1121 124x 0.1 pl. grad = 1,M This is not or the dust

The problem and the state of the state o Poperties of the state of t 652.4 Kg)m. as load calculation $\frac{1}{2}$ is the $\frac{1}{2}$ is notified built the set (a) load calculation Dead load = 15 rad/m + $22 \text{ rad/s} \times 2$ 35.524 KN/m. 3946 mmss > 03.01 = 3 Ultimate load = $35.524 \times 1.5 = 53.286$ KN/m Ultimate load = 35.524 x 1.5 = 53.286 KN/m.
 $M_{\mu} = \frac{|\alpha_{\mu}|^{2}}{8}$ 53.286 x 5² = 166.5 km - m.
 $M_{\mu} = \frac{|\alpha_{\mu}|^{2}}{8}$ 53.286 x 5² = 166.5 km - m. $\Gamma_{\text{NS}} = \left(870 + 79.5 \right) 8.1 \times \frac{250}{11}$ heck for shear: $\frac{Fq \text{ no } -593}{r \text{ o. } 6 \left[\frac{fq}{r \text{ o. } km\text{ o.}} \times Av\right]} > Vu$
 $Vq = 350 \times 3.1$
 $Vq = 350 \times 3.1$
 $Vq = 2835 \text{ mm}^2$ (3) Avail (3)
 $A \text{ no } = 1.10$. (b) Check for Shear: $\frac{(pq \times 69)}{2}$ Amo = 1.10.
 $\frac{250}{100}$ x 283.5; $\frac{1}{200}$ x 382.5; $\frac{1}{200}$ x 382.5; $\frac{1}{200}$ x 382.5; $\frac{1}{200}$ x 382.5; $\frac{1}{200}$ x 382. $20.6 \left[\overline{3 \times 110^{+}} \right]^{2}$
= 223.1 km²: $\sqrt{\alpha}$ = 133.21
= 223.1 km²: $\sqrt{\alpha}$ = 133.21
= 223.1 km²: $\sqrt{\alpha}$ = 133.21
= 1918.1.2.2 x140.00 $F_{obs} = (200 + 175)x(3.181)x$ Coschere for "Moment of Resistance" (Pq, MQ 53) $M_d = \frac{\beta_b Z_p. f_y}{\lambda m e_p}$ $\binom{n_0}{t_k} = \frac{140/2}{14.2}$ $\binom{n_1 + 2}{14.2}$ $\binom{n_2 + 2}{14.2}$ $\binom{n_3 + 2}{14.2}$ $\binom{n_1 + 2}{14.2}$ $\binom{n_1 + 2}{14.2}$ $\binom{n_1 + 2}{14.2}$ $\binom{n_2 + 2}{14.2}$ $\binom{n_3 + 2}{14.2}$ $\binom{n_3 + 2}{14.2}$ $\binom{n_3 + 2}{14.2}$ $\binom{n_3 + 2}{14$ i , $B = 1$ $9b$)

 $\frac{1}{2}$

³. *D* is sign a beam of *Q* (i) the
\n³ and *Q* is the same as the following
\n³ and *Q* is the same as the following
\n³ (a) *load* (a) *load* (b) *standard* (c) *load* (d) *total* (e) *standard* (f) *standard* (g)
$$
= \frac{1}{1! \text{ rad/m}}
$$
\n
$$
= \frac{1}{1! \text{ rad/m}}
$$
\n<math display="block</sup>

 10

 $\overline{\mathbf{3}}$

