	TUTE OF INOLOGY		USN									COMPANIENT OF TICH	CMRIT DOLOCI, SENALUSII.
		Internal	l Assesm	ent Te	est – II	Augus	t 2022						
Sub: Complex Analysis, Probability and Statistical Methods Code							e:	18MAT41		[
Date:	03/08/2022	Duration: 9	90 mins	Max	Marks:	50	Sem:	4	Bran	ch:	ALL (Except for EEE B)		
	Questi	ion 1 is compul	sory and	answer	any 6 fr	om the re	emaining	g ques	tions.				
					Maı	rks	OBE						
					Iviai	IXO	CO	RBT					
Discuss the transformation $\mathbf{w} = \mathbf{z} + \frac{1}{z}, \mathbf{z} \neq 0$.						[3	8]	CO2	L3				
2 Discuss the transformation $\mathbf{w} = \mathbf{e}^{\mathbf{z}}$.						[′	7]	CO2	L3				
Find the bilinear transformation which maps the points $\mathbf{z} = 1, \mathbf{i}, -1$ onto the points $\mathbf{w} = 2, \mathbf{i}, -2$.						[7	7]	CO2	L3				
4	Find the bilinear trans $w = -1, -i, 1$. Also		•	•			nto the p	oints		[′	7]	CO2	L3

CMR INSTITUTE OF TECHNOLOGY		USN									COME INSTITUTE OF FECHA	CMRIT HOLOGY, BENGALURU, GRADE BY HAAR	
	Internal Assesment Test – II August 2022												
Sub: Complex Analysis, Probability and Statistical Methods Co					Code	ode: 18		8MAT41					
Date:	03/08/2022	Duration:	90 mins	Max	Marks:	50	Sem:	4	Bran	ich:	ch: ALL (Except for EEE B)		
	Questi	on 1 is compu	lsory and	answer	any 6 f	rom the	remainin	g ques	tions.				
					Mar		OB	BE					
						1,14111		CO	RBT				
Discuss the transformation $w = z + \frac{1}{z}, z \neq 0$.						[8]	CO2	L3				
2 Discuss the transformation $\mathbf{w} = \mathbf{e}^{\mathbf{z}}$.						['	7]	CO2	L3				
3	Find the bilinear trans	formation wh	n which maps the points $\mathbf{z} = 1, \mathbf{i}, -1$ onto the points [7] CO2					L3					
	w=2,i,-2.												LJ
	Find the bilinear trans	formation wh	nich maps	the poi	nts $z =$	∞ , i , 0	onto the	points		['	7]	CO2	
w = -1, -i, 1. Also find the invariant points of this transformation.							L3						

5	Evaluate $\int_{(0,1)}^{(2,5)} (3x+y) dx + (2y-x) dy$ along (i) the curve $y = x^2 + 1$, (ii) the line joining $(0,1)$ and $(2,5)$.	[7]	CO2	L3
6	State and prove Cauchy's theorem.	[7]	CO2	L3
7	Evaluate $\int_C \frac{e^{2z}}{z+i\pi} dz$ over (i) $ z =2\pi$ and (ii) $ z-1 =1$.	[7]	CO2	L3
8	Evaluate $\int_C \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)(z-2)} dz$ where $C: z = 3$.	[7]	CO2	L3

5	Evaluate $\int_{(0,1)}^{(2,5)} (3x+y)dx + (2y-x)dy$ along (i) the curve $y=x^2+1$, (ii) the line	[7]	CO2	Y 0
	joining (0, 1) and (2, 5).			L3
6	State and prove Cauchy's theorem.	[7]	CO2	L3
7	Evaluate $\int_C \frac{e^{2z}}{z+i\pi} dz$ over (i) $ z =2\pi$ and (ii) $ z-1 =1$.	[7]	CO2	L3
8	Evaluate $\int_C \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)(z-2)} dz$ where $C: z = 3$.	[7]	CO2	L3

Discussion of Transformation W=Z+= , Z+0 consider w=z+= , put z=reio & w=u+i'v utiv = rei0+ Lei0 $\frac{1}{2} = \frac{1}{2i0} = e^{i0}$ = r(coho+isind) + 1 (coho-isind) $u+iv=(r+\frac{1}{2})cos0+i(r-\frac{1}{2})sin0$ Equating real and imaginary parts $u = (r + \frac{1}{r}) \cos \theta$, $v = (r - \frac{1}{r}) \sin \theta$ we shall eliminate r a o separately from 1 From O, $\frac{U}{(r+\frac{1}{r})} = coh\theta$ $\frac{V}{(r-\frac{1}{r})} = Sin\theta$ Squaring and adding b.s. $\frac{U^2}{\left(\gamma + \frac{1}{\gamma}\right)^2} + \frac{V^2}{\left(\gamma - \frac{1}{\gamma}\right)^2} = 1, \quad \gamma \neq 1$ Also, from (1), $\frac{u}{\sin \theta} = (r + \frac{1}{\delta}), \frac{v}{\sin \theta} = (r - \frac{1}{\delta})$ Squaring a subtracting above equations, we get $\frac{u^{2}}{\cos^{2}\theta} - \frac{v^{2}}{\sin^{2}\theta} = \left(r + \frac{1}{r}\right)^{2} - \left(r - \frac{1}{r}\right)^{2}$ $\mathcal{L}. 1/19 - \left[\sqrt{x}\right].$ = 1/2 + 2 - [8/4/82-2] $(\frac{u^2}{(2\cos\theta)^2} - \frac{v^2}{(2\sin\theta)^2} = 1$ Since z=reio, |z|=r, amplitude & z=ampz=0

Since $Z = Ye^{i}$, |Z| = Y, amplitude $\frac{1}{2}Z = ampz = 0$ $|Z| = Y \Rightarrow |X + iY| = Y \Rightarrow \sqrt{x^2 + y^2} = Y \Rightarrow x^2 + y^2 = y^2$ where |Z| = Y, represents a circle with centreal origin and radius Y in Z-plane.

This represents a straight line in z-plane (with 0 = constant)

Equation (2) & the becomes.

$$\frac{u^{2}}{(r+\frac{1}{r})^{2}} + \frac{v^{2}}{(r-\frac{1}{s})^{2}} = 1 \implies \frac{u^{2}}{A^{2}} + \frac{v^{2}}{B^{2}} = 1$$

where
$$A = \gamma + \frac{1}{\gamma}$$
, $B = \gamma - \frac{1}{\gamma}$

This represents an ellipse in the w-plane with foci (plural of focus) $(\pm \sqrt{A^2-B^2}, 0) = (\pm 2, 0)$

$$\left[\frac{1}{2} A^2 - B^2 = \left(x + \frac{1}{r} \right)^2 - \left(x - \frac{1}{r} \right)^2 = A \right]$$

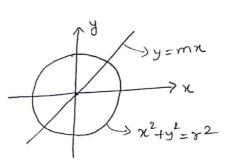
i. The Circle |z|= r in the z-plane maps onto an ellipse in the w-plane with foci (±2;0)

case(2): Let 0 = constant

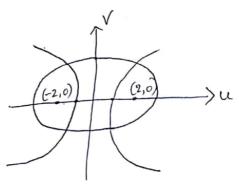
Eqn(3) can be written as
$$\frac{u^2}{A^2} - \frac{v^2}{B^2} = 1$$

where A = 2 coso, B = 2 sino

This represents a hyperbola in the w-plane with $foci(\pm 2,0)$ Hence the straight line parling through the origin in the z-plane maps onto a hyperbola in the w-plane, with $foci(\pm 2,0)$.



2-plane



w-plane.

6. mterral or Cauchy's theorem - Date. Page.
integral or Cauchy's theorem - Date. Page. Touchy's theorem — If f(x) is analytic in a simply connected domain D Than
connected domain D then
$\oint_C f(z)dz = 0 \text{for any curve } C \text{ lying}$
entitely with in D.
Proof - Consider
$ \oint_{C} f(x) dx = \oint_{C} (u(x,y) + iv(x,y)) (dx + idy) $
$= \oint_{C} (udx - vdy) + i \oint_{C} (udy + vdx) = I_1 + I_2$
Given $f(z)$ is analytic so u and v have continuous partial deservative in D. (and f' is assumed to be continuous)
spply Green's theorem in plane of I, and I,
Green's theorem $\int_{C} M dx + N dy = \iint_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx dy$
$I_2 = \int_C (udy + vdz) = \iint_R \left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right) dx dy = 0$ by (-1) by (-1) by
$\therefore \oint_{C} f(z) dx = I_{1} + I_{2} = 0$

X=C,

Find the bilinear transformation which maps the points Z=1, i, -1 into W=2, i, -2. Also find the invariant points g the transformation. (or fixed points) $S_0M=1$. Let $W=\frac{az+b}{cz+d}$ be the required S_0LT — () $S_0M=1$ $S_0M=1$

$$a+b-2c-2d=0$$

$$pt z=i, w=i in eqn(), i=ai+d$$

$$ai+b+c-di=0$$

$$ai+b+c-di=0$$

$$ai+b+c-di=0$$

$$-a+b-2c+2d=0$$

$$-a+b-2c$$

4) Find BLT weelich maps 2=00, i,0 to w=+,-i,1 Also find fixed ptx of the teauformer. Let w = az +b be the reg BLT C2+Q $z=\infty$ $\sqrt{w=-1}$ \Rightarrow $w=\sqrt{(\alpha+\frac{1}{2})}$ $\sqrt{\alpha+\frac{1}{2}}$ $\sqrt{(\alpha+\frac{1}{2})}$ $\sqrt{(\alpha+\frac{1}{2})}$ $\sqrt{(\alpha+\frac{1}{2})}$ $\sqrt{(\alpha+\frac{1}{2})}$ $\frac{1}{c+0} = \frac{a+0}{c+0} = \frac{a+c=0}{c+0} = 0$ z=i ψ $\psi=-i$ \Rightarrow $\psi=-i$ $\psi=-i$ 2 = 0 1 = 0 + b = 0 + d = 0 = 0 + d = 01 + 2 gra a (1+i) + b + id = 0 - 4 Soliy (3) 4 (4) 0a+1b-1d=0 $\frac{a}{1-1} = \frac{-b}{10-1} = \frac{d}{10-1} = \frac{d}{10-1}$ $= \frac{a}{1} = \frac{b}{-1} = \frac{a}{-1}$ a=1 & b=-)

8d=/

. = (= a

$$-12-1 = \frac{1}{-12-1}$$

Invariant pla are obtained by taking was

$$2 = \frac{1-2}{1+2} \Rightarrow 2+2^{\alpha} = 1-2$$

5. i)
$$y = x^{2} + 1 \Rightarrow dy = 2x dx \text{ and } x \text{ varies from}$$

0 $6 = 2$.

(2,5)
$$\int (3x + y) dx + (2y - x) dy$$
(0,1)
$$= \int_{x=0}^{2} \left\{ (3x + x^{2} + 1) dx + (2x^{2} + 2 - x) 2x dx \right\}$$

$$= \int_{x=0}^{2} (4x^{3} - x^{2} + 7x + 1) dx = \left[x^{4} - \frac{x^{3}}{3} + \frac{7x^{2}}{2} + x \right]_{0}^{2}$$

$$= 16 - \frac{8}{3} + 14 + 2z \frac{88}{3}$$
ii) Equation of the line joining (0,1) and (2,5):
$$= \frac{y - 1}{x - 0} = \frac{1 - 5}{0 - 2} \Rightarrow y = 2x + 1$$

$$= \frac{1 - 5}{x - 0} \Rightarrow y = 2x + 1$$

$$= \frac{1 - 5}{x - 0} \Rightarrow y = 2x + 1$$

$$= \frac{1 - 5}{x - 0} \Rightarrow y = 2x + 1$$

$$= \frac{1 - 5}{x - 0} \Rightarrow y = 2x + 1$$

$$= \frac{1 - 5}{x - 0} \Rightarrow y = 2x + 1$$

$$= \frac{1 - 5}{x - 0} \Rightarrow y = 2x + 1$$

$$= \frac{1 - 5}{x - 0} \Rightarrow y = 2x + 1$$

$$= \frac{1 - 5}{x - 0} \Rightarrow y = 2x + 1$$

$$= \frac{1 - 5}{x - 0} \Rightarrow y = 2x + 1$$

$$= \frac{1 - 5}{x - 0} \Rightarrow y = 2x + 1$$

$$= \frac{1 - 5}{x - 0} \Rightarrow y = 2x + 1$$

$$= \frac{1 - 5}{x - 0} \Rightarrow y = 2x + 1$$

$$= \frac{1 - 5}{x - 0} \Rightarrow y = 2x + 1$$

$$= \frac{1 - 5}{x - 0} \Rightarrow y = 2x + 1$$

$$= \frac{1 - 5}{x - 0} \Rightarrow y = 2x + 1$$

$$= \frac{1 - 5}{x - 0} \Rightarrow y = 2x + 1$$

$$= \frac{1 - 5}{x - 0} \Rightarrow y = 2x + 1$$

$$= \frac{1 - 5}{x - 0} \Rightarrow y = 2x + 1$$

$$= \frac{1 - 5}{x - 0} \Rightarrow y = 2x + 1$$

$$= \frac{1 - 5}{x - 0} \Rightarrow y = 2x + 1$$

$$= \frac{1 - 5}{x - 0} \Rightarrow y = 2x + 1$$

$$= \frac{1 - 5}{x - 0} \Rightarrow y = 2x + 1$$

$$= \frac{1 - 5}{x - 0} \Rightarrow y = 2x + 1$$

$$= \frac{1 - 5}{x - 0} \Rightarrow y = 2x + 1$$

$$= \frac{1 - 5}{x - 0} \Rightarrow y = 2x + 1$$

$$= \frac{1 - 5}{x - 0} \Rightarrow y = 2x + 1$$

$$= \frac{1 - 5}{x - 0} \Rightarrow y = 2x + 1$$

$$= \frac{1 - 5}{x - 0} \Rightarrow y = 2x + 1$$

$$= \frac{1 - 5}{x - 0} \Rightarrow y = 2x + 1$$

$$= \frac{1 - 5}{x - 0} \Rightarrow y = 2x + 1$$

$$= \frac{1 - 5}{x - 0} \Rightarrow y = 2x + 1$$

$$= \frac{1 - 5}{x - 0} \Rightarrow y = 2x + 1$$

$$= \frac{1 - 5}{x - 0} \Rightarrow y = 2x + 1$$

$$= \frac{1 - 5}{x - 0} \Rightarrow y = 2x + 1$$

$$= \frac{1 - 5}{x - 0} \Rightarrow y = 2x + 1$$

$$= \frac{1 - 5}{x - 0} \Rightarrow y = 2x + 1$$

$$= \frac{1 - 5}{x - 0} \Rightarrow y = 2x + 1$$

$$= \frac{1 - 5}{x - 0} \Rightarrow y = 2x + 1$$

$$= \frac{1 - 5}{x - 0} \Rightarrow y = 2x + 1$$

$$= \frac{1 - 5}{x - 0} \Rightarrow y = 2x + 1$$

$$= \frac{1 - 5}{x - 0} \Rightarrow y = 2x + 1$$

$$= \frac{1 - 5}{x - 0} \Rightarrow y = 2x + 1$$

$$= \frac{1 - 5}{x - 0} \Rightarrow y = 2x + 1$$

$$= \frac{1 - 5}{x - 0} \Rightarrow y = 2x + 1$$

$$= \frac{1 - 5}{x - 0} \Rightarrow y = 2x + 1$$

$$= \frac{1 - 5}{x - 0} \Rightarrow y = 2x + 1$$

$$= \frac{1 - 5}{x - 0} \Rightarrow y = 2x + 1$$

$$= \frac{1 - 5}{x - 0} \Rightarrow y = 2x + 1$$

$$= \frac{1 - 5}{x - 0} \Rightarrow y = 2x + 1$$

$$= \frac{1$$

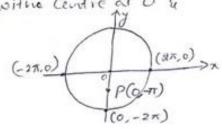
goln: we have
$$\int_{\zeta} \frac{f(z)}{z-a} dz$$

even integral can be writtened $\int_{z-(1\pi)}^{2\pi} dz$
 $f(z) = e^{z}$, $a = -i\pi$ This is the point $p(0, -\pi)$

(i)

121 = 27 represents a circle with centre at 0 & radius 21.

The point z = a = - ix is a Point P(0, -x), lies within the circle 121 = 2T



we have cauchy's integral formula $\int_{0}^{\infty} \frac{f(z)}{z-a} dz = 2\pi i f(a)$

we have f(z) = e2, a = -ix

We have
$$f(z) = e^{z}$$
, $\alpha = -i\pi$

$$\therefore \int \frac{e^{z}}{z+i\pi} dz = 2\pi i f(-i\pi) = 2\pi i e^{-i\pi} = 2\pi i (\cos \pi - i\sin \pi)$$

$$= -2\pi i \int \frac{e^{z}}{z+i\pi} dz = 2\pi i$$

$$\therefore \int \frac{e^{z}}{z+i\pi} dz = 2\pi i$$

(ii)

(c) 12-11 = 1 is a circle with centre at z = a = 1 & radius 1

i.e It is a circle with centre (1,0) and radius 1

The point P (0, - n) lies out side the circle 12-11=1.

Hence by cauchy's theorem $\int \frac{e^2}{z+i\pi} dz = 0 \left(\text{ where } c \text{ is } |z-1| = 1 \right)$

$$\int \frac{\sin \pi z^2 + \cot \pi z^2}{(2-1)(2-2)} dz = \int \frac{f(z)}{(2-1)(2-2)} dz$$

Now
$$\perp$$
 $(z-1)(z-2) = \frac{A}{(z-1)} + \frac{B}{(z-2)}$

$$=) 1 = A(2-2) + B(2-1)$$

$$\frac{1}{(2-1)(2-2)} = \frac{1}{2-1} + \frac{1}{2-2}$$

$$\int \frac{f(z)}{c(z-a)} dz = 2\pi i f(a), \quad a \quad ii \quad apt lier invide$$

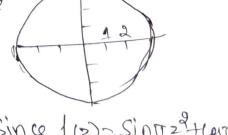
Given 12/=3 à a circle weigh center 0

& gradiue 3 Both points 122 lies inside

Les introde

Les inside

Les inside



$$-\frac{1}{2} \int \frac{\sin(\pi z^2) + \cos(\pi z^2)}{(z-1)(z-2)} dz = 2\pi^2 \int (1) + 2\pi i \int (2)$$

$$= -2\pi i(-1) + 2\pi i(1)$$