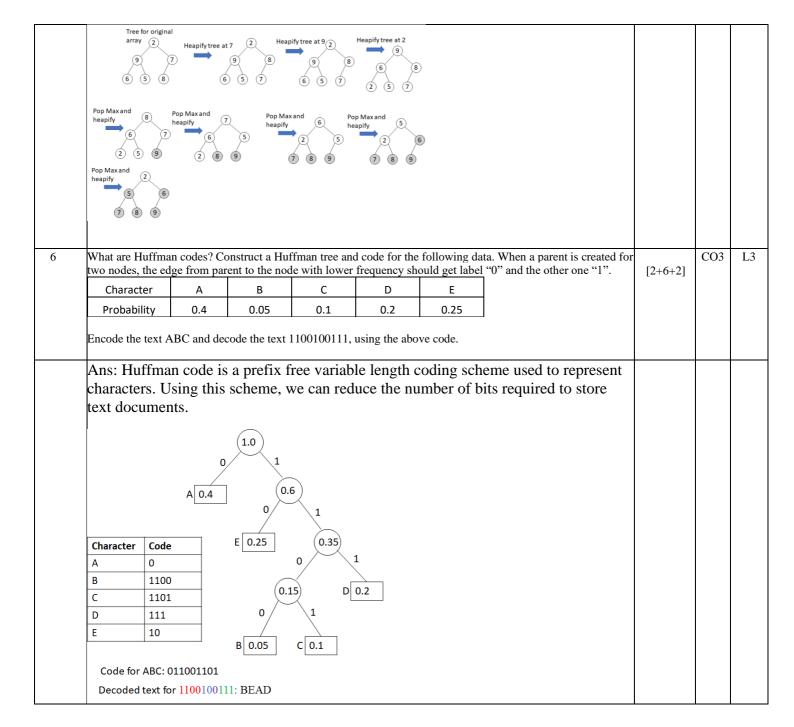
USN					



Internal Assessment Test 2 – Aug 2022

				Assessment	1 est 2				1			
Sub:	Design and An	alysis of Algo	rithms			Sub Code:	18CS42	Branch:	CSE			
Date:	03/08/2022	Duration:	90 mins	Max Marks:	50	Sem/Sec:	IV/A	A,B&C		OBE		
		<u>A</u> :	nswer any FI	VE FULL Quest	tions			N	IARK	CO	RBT	
1	a. Define i) Optim	al solution ii)	Feasible soluti	on. iii)Will greed	y metho	d yield an optir	nal solution alwa	ys? [2	S 2+2+1]	CO3	L2	
	Ans: Most of the optimization problems have n inputs and require us to obtain a subset that satisfies some constraints. Any subset that satisfies these constraints is called a feasible solution. A feasible solution that either maximizes or minimizes a given objective function is known as optimal solution. Although greedy method provides an efficient algorithm for many optimization problems, there are some problems where greedy approach does not guarantee an optimal solution. Example 0-1 knapsack b. Solve the greedy knapsack problem where m=10, n=4, P=(40,42,25,12), W=(4,7,5,3) Ans:								[5]	CO3	L2	
	Items # taken	the of item1 = the of item1 = the of item1 = the items as the items are the i	= 40/4 = 10 = 42/7 = 6 = 25/5 = 5 = 12/3= 4 per per unit Remaining sack capacity	t value and ta								
2	Define minimum following graph			cost spanning tree pare it with Krusk				[2	2+6+2]	CO2	L2	
	Ans: A spann subgraph (i.e. spanning tree is defined as to the Create minimidentify the enalready create	, a tree) that is a spanning the sum of the um spanning dge with mis	contains all general tree who he weights of tree startinimum weights	Il the vertices se weight is son all its edge ng with node ght that is go	of the malle es. a. In ing from	e graph. A rest where the each of the om a node in	ninimum e weight of a subsequent s n the partial t	teps,				

The steps can be shown by drawing the growth of the tree (shown below) or using a table.	l		
1 2 3 3 5 5 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Đ		
Weight of the MST is $2+1+3+4+5=15$			
What is job sequencing with deadlines problem? Let n=5, profits [10,3,33,11,40] and deadlines[3,1,1,2,2] Find the optimal sequence of jobs with deadlines.	[10]	CO2	L2
Ans: We are given a set of n jobs. Associated with job i is an integer deadline di >= 0 and a profit pi> 0. For any job i, the profit pi is earned iff the job is completed by its deadline. To complete a job, one has to process the job on a machine for one unit of time (i.e. all jobs are 1 unit long) A feasible solution for this problem is a subset J of all jobs such that each job in this subset can be completed by its deadline. The value of a feasible solution J is the sur of the profits of the jobs in J. An optimal solution is a feasible solution with maximum value (2 marks)	3		
Solution to the given job sequencing with deadlines problem (8 marks)			
Sort the jobs in decreasing order of profits and schedule them in that order. Schedul the job as late as possible. If there is no free slot, discard it.	e		
Sorted order of Job Numbers with profit and deadline in backets: 5(40,2), 3(33,1), 4(11,2), 1(10,3), 2(3,1).			
 Schedule 5 at slot 2 Schedule 3 at slot 1 			
3. 4 cannot be schedule as all slots up to 2 are full			
4. Schedule 1 at slot 3			
5. 2 cannot be schedule as all slots up to 1 are full			
Total profit earned: $40+33+10=83$			
Write Dijkstra's algorithm and apply the same to find the single source shortest path for graph taking vertex 'a as source of below figure.	[10]	CO3	L2

ALGO	RITHM $Dijkstra(G, s)$										
0.0000000000000000000000000000000000000	Dijkstra's algorithm for single-source	ce shortest paths									
		$G = \langle V, E \rangle$ with nonnegative weights									
//	// and its vertex s										
//C	Output: The length d_v of a shortest	path from s to v									
//	and its penultimate vertex										
	Initialize(Q) //initialize priority queue to empty										
for	every vertex v in V										
	$d_v \leftarrow \infty; p_v \leftarrow \mathbf{null}$										
,	$Insert(Q, v, d_v)$ //initialize verte										
	$\leftarrow 0$; $Decrease(Q, s, d_s)$ //updat	te priority of s with d_s									
	$i \leftarrow \emptyset$ $i \leftarrow 0 \text{ to } V - 1 \text{ do}$										
101	$u^* \leftarrow DeleteMin(Q)$ //delete the	e minimum priority element									
	$V_T \leftarrow V_T \cup \{u^*\}$	e minimum priority element									
	for every vertex u in $V - V_T$ that	is adjacent to u^* do									
	if $d_{u^*} + w(u^*, u) < d_u$										
	$d_u \leftarrow d_{u^*} + w(u^*, u); p_u$	$u \leftarrow u^*$									
Ans:	$Decrease(Q, u, d_u)$										
	Node which is added to the										
	list of nodes to which										
Step#	Step # calculated Current shortest distance to other nodes										
1	a(-,0)	b(a,3), d(a,7), c(-, ∞), e(-, ∞)									
2											
3											
4											
	c(b,7)	e(d,9)									
5	e(d,9)	<u> </u>	5.43	GOA							
a. Compare C	Greedy approach with Dynamic Progra	imming.	[4]	CO3	L2						
b. Describe th	ne various steps involved in bottom up	heap construction with example. Sort the given list of									
numbers usin	g heap sort 2, 9, 7, 6, 5, 8		[6]	CO1							
Ans:											
FEATURE	GREEDY METHOD I	DYNAMIC PROGRAMMING									
PEATORE	In a greedy Algorithm we make whatever choice	n Dynamic Programming we make decision at each									
Feasibility	will lead to global optimal solution.	step considering current problem and solution to previously solved sub problem to calculate optimal solution.									
		t is guaranteed that Dynamic Programming will									
Optimality	guarantee of getting Optimal Solution.	generate an optimal solution as it generally considers all possible cases and then choose the best.									
Recursion	heuristic of making the locally optimal choice at each stage.	A Dynamic programming is an algorithmic technique which is usually based on a recurrent formula that uses some previously calculated states.									
Memorization	It is more efficient in terms of memory as it is never look back or revise previous choices	t requires dp table for memorization and it ncreases it's memory complexity.									
Time complexit	Greedy methods are generally faster. For ty example, <u>Dijkstra's shortest path</u> algorithm takes O(ELogV) time.	Dynamic Programming is generally slower. For example, Bellman Ford algorithm takes O(VE) time.									
Fashion		Dynamic programming computes its solution bottom up or top down by synthesizing them from smaller optimal sub solutions.									
Ans: b											
	lize the structure with keys in the orde	ē									
condition: ke	ng with the last (rightmost) parental neep exchanging it with its larger child at Step 1 for the preceding parental no										
	1 L										

BEST OF LUCK

	CO-PO and CO-PSO Mapping																		
Course Outcomes		Blooms	Modules	P01	PO2	P03	P04	P05	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2	PSO3	PS04
CO1	Describe the computational solution to well-known problems like searching and sorting	L1	1,2	2	3	2	2	-	2	-	-	2	-	-	-	2	-	,	2
CO2	Estimate computational complexity of various algorithms.	L2	1,2,3,4,5	3	3	2	2	-	2	-	-	2	ı	ı	1	2	-	1	2
CO3	Devise an algorithm using appropriate design strategies for computation problems.	L3	2,3,4,5	3	3	2	2	-	2	-	-	2	-	-	-	2	-	1	2

COGNITIVE LEVEL	REVISED BLOOMS TAXONOMY KEYWORDS
L1	List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who, when, where, etc.
L2	summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate, discuss, extend
L3	Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate, change, classify, experiment, discover.
L4	Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain, infer.
L5	Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain, discriminate, support, conclude, compare, summarize.

PF	PROGRAM OUTCOMES (PO), PROGRAM SPECIFIC OUTCOMES (PSO)								
PO1	Engineering knowledge PO7 Environment and sustainability				No Correlation				
PO2	Problem analysis	PO8	Ethics	1	Slight/Low				
PO3	Design/development of solutions	PO9	Individual and team work	2	Moderate/ Medium				
PO4	Conduct investigations of complex problems	PO10	Communication	3	Substantial/ High				
PO5	Modern tool usage	PO11	Project management and finance						
PO6	The Engineer and society	PO12	Life-long learning						