

USN

Internal Assessment Test 2 – June 2022

Sub: Software Testing
Sub

Code:
18IS62 Branch: ISE

Date: 08/06/2022 Duration: 90 min’s Max Marks: 50 Sem/Sec: VI A, B, C OBE

Answer any FIVE FULL Questions MARKS CO RBT

1 Describe weak normal, strong normal and weak robust, strong robust equivalence class
testing, with a neat diagram.

10 CO1,
CO2

L2

2a) Explain decision table testing and generate test cases for commission problem using
decision table

6 CO1,
CO2

L2

2b) Explain fault based testing, and mutation analysis. 4 CO2,
CO3

L2

3 Consider the following program. Find the DU paths for the variables staff Discount,
total Price, final Price, discount and price. Verify whether these DU paths are definition
clear.

10 CO3,
CO4

L3

4 Explain McCabe's basis path testing with Triangle problem. 10 CO1 L2

5 Define DD path graph. Draw DD path graph for triangle program problem. 10 CO1 L2

6 Consider the following C function which encodes the string in the following manner.
If the string character is + or

10 CO3,
CO4

L3

 - or *, it is replaced with space ' ‘, if it is uppercase character, it is replaced with
lowercase. Other alphanumeric

 characters are simply copied in destination string. Draw the control flow graph for
the program. Find out the

 statement coverage and node coverage % from control flow graph for the following
test suite T0=

 {"test”, “test**ing", "test+-"}

 1. const char* encode (char *str) {

 2. int i = 0;

 3. char *str1=str;

 4. char en_str[25];

 5. while (str1[i] != '\0') {

 6. if(str1[i]=='*'|| str1[i]=='+'||str1[i] =='-')

Faculty Signature CCI Signature HOD Signature

 7. en_str[i] =' ';

 8. else if(str1[i]>=65 && str1[i]<=90)

 9. en_str[i]=str1[i]+32;

 10. else

 11. en_str[i]=str1[i];

 12. i++;

 13.}

 14. en_str[i]='\0';

 15. return (en_str);

 }

USN

Internal Assessment Test 2 – June 2022

Sub: Software Testing-Scheme and Solutions Sub Code:
18IS62

Branch: ISE

Date: 8/06/2022 Duration: 90 min’s Max Marks: 50 Sem/Sec: VI C OBE

Answer any FIVE FULL Questions MARKS CO RBT

1 Describe weak normal, strong normal and weak robust, strong robust equivalence
class testing, with a neat diagram.

Weak normal [2.5 marks]

Explanation:1.5 marks

Diagram: 1 mark

Strong normal [2.5 marks]

Explanation:1.5 marks

Diagram: 1 mark

Weak robust [2.5 marks]

Explanation:1.5 marks

Diagram: 1 mark

Weak robust [2.5 marks]

Explanation:1.5 marks

Diagram: 1 mark
Weak Normal Equivalence Class Testing
• For the running example, we would end up with the three weak equivalence class
test cases.

• These three test cases use one value from each equivalence class. The test case in
the lower left rectangle corresponds to a value of x1 in the class [a, b), and to a value
of x2 in the class [e, f).

• The test case in the upper center rectangle corresponds to a value of x1 in the class
[b, c) and to a value of x2 in the class [f, g].

• The third test case could be in either rectangle on the right side of the valid values.
• There could be a problem with x1, or a problem with x2, or maybe an interaction
between the two. This ambiguity is the reason for the “weak” designation.

• If the expectation of failure is low, as it is for regression testing, this can be an
acceptable choice. When more fault isolation is required, the stronger forms,discussed
next, are indicated.

[10] CO1,
CO2

L2

Strong Normal Equivalence Class Testing

•Strong equivalence class testing is based on the multiple fault assumption, so we
need test cases from each element of the Cartesian product of the equivalence

classes.

• The Cartesian product guarantees that we have a notion of “completeness” in two

senses: we cover all the equivalence classes, and we have one of each possible

combination of inputs. As we shall see from our continuing examples, the key to

“good” equivalence class testing is the selection of the equivalence relation.

• Watch for the notion of inputs being “treated the same.” Most of the time,

equivalence class testing defines classes of the input domain. There is no reason why

we could not define equivalence relations on the output range of the program

function being tested; in fact, this is the simplest approach for the triangle problem.

Weak Robust Equivalence Class Testing
• The robust part comes from consideration of invalid values, and the weak part refers
to the single fault assumption. The process of weak robust equivalence class testing is
a simple extension of that for weak normal equivalence class testing—pick test cases
such that each equivalence class is represented.

• The two additional test cases cover all four classes of invalid values. The process
is similar to that for boundary value testing:

1. For valid inputs, use one value from each valid class (as in what we have called
weak normal
equivalence class testing). (Note that each input in these test cases will be valid.)
2. For invalid inputs, a test case will have one invalid value and the remaining values
will all be

valid. (Thus, a “single failure” should cause the test case to fail.)

Strong Robust Equivalence Class Testing
• The robust part comes from consideration of invalid values, and the strong part
refers to the multiple fault assumption. We obtain test cases from each element of the
Cartesian product of all the equivalence classes, both valid and invalid.

2a) Explain decision table testing and generate test cases for commission problem
using decision table.
Explanation: 1Mark

Test case: 5Marks

Decision Table Testing

• To identify test cases with decision tables, we interpret conditions as inputs and
actions as outputs. Sometimes conditions end up referring to equivalence classes of
inputs, and actions refer to major functional processing portions of the item tested.
• The rules are then interpreted as test cases.
• Decision table have some assurance that we will have a comprehensive set of test
cases. Several techniques that produce decision tables are more useful to testers.

Test Cases for Commission Problem

[6] CO1,
CO2

L2

2b) Explain fault based testing, and mutation analysis.

Fault Based Testing [2 marks]

Explanation:2 marks

Mutation Analysis [2 marks]

Explanation:2 marks

Fault Based Testing
• A model of potential program faults is a valuable source of information for
evaluating and designing test suites.

• Some fault knowledge is commonly used in functional and structural testing, for
example when identifying singleton and error values for parameter characteristics in
category-partition testing or when populating catalogs with erroneous values, but a
fault model can also be used more directly.

• Fault-based testing uses a fault model directly to hypothesize potential faults in a
program under test, as well as to create or evaluate test suites based on its efficacy in
detecting those hypothetical faults.
• The basic concept of fault-based testing is to select test cases that would

distinguish the program under test from alternative programs that contain

hypothetical faults.
• This is usually approached by modifying the program under test to actually

produce the hypothetical faulty programs.

Mutation analysis
• Mutation analysis is the most common form of software fault-based testing. A fault
model is used to produce hypothetical faulty programs by creating variants of the
program under test. Variants are created by "seeding" faults, that is, by making a
small change to the program under test following a pattern in the fault model.
•The patterns for changing program text are called mutation operators, and each
variant program is called a mutant.
• We say a mutant is valid, if it is syntactically correct. A mutant obtained from the
program by substituting while for switch in the statement at line 13 would not be
valid, since it would result in a compile-time error.

[4] CO2,
CO3

L2

3 Consider the following program. Find the DU paths for the variables staff Discount, total
Price, final Price, discount and price. Verify whether these DU paths are definition clear.

10 CO3,
CO4

L3

Staff Discount: 2Marks

Total Price: 2Marks

Final Price: 2Marks

Discount: 2Marks

Price: 2Marks

DU path for staff discount

P1 (3, 12) = <3, 4, 5, 6, 7, 8, 9, 10, 11, 12> is definition clear
P2 (3, 14) = <3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14> is not definition clear

DU path for total price

P3 (4, 7) = <4, 5, 6, 7> is definition clear
P4 (4, 10) = <4, 5, 6, 7, 8, 9, 10> is not definition clear
P5 (7, 6) = <7, 8, 9, 6> is definition clear
P6 (7, 7) = <7, 8, 9, 6, 7> is not definition clear
P7 (7, 10) = <7, 8, 9, 6, 10> is definition clear
P8 (7, 11) = <7, 8, 9, 6, 10, 11> is definition clear
P9 (7, 12) = <7, 8, 9, 6, 10, 11, 12> is definition clear
P10 (7, 14) = <7, 8, 9, 6, 10, 11, 12, 13, 14> is definition clear

DU path for final price

P11 (17, 17) = <17, 17> is definition clear

DU path for discount

P12 (12, 16) = <12, 13, 14, 15, 16> is not definition clear
P13 (12, 17) = <12, 13, 14, 15, 16, 17> is not definition clear
P14 (12, 16) = <12, 13, 14, 15, 16> is not definition clear
P15 (14, 16) = <14, 15, 16> is definition clear
P16 (14, 17) = <14, 15, 16, 17> is definition clear

DU path for price

P17 (5, 6) = <5, 6> is definition clear
P18 (5, 7) = <5, 6, 7> is definition clear
P19 (8,6) = <8, 9, 6> is definition clear
P20 (8, 7) = <8, 9, 6, 7> is definition clear

4 Explain McCabe's basis path testing with Triangle problem.
Explanation: 2Marks

Diagram: 5Marks

Basis Paths Tables: 2Marks

McCabe's Basis Path Method:
• McCabe's view is: There are two soft spots
1. Testing only the set of basis paths is sufficient.
2. Program paths look like a vector space.
• McCabe’s example that the path A, B, C, B, C, B, C, G is the linear
combination 2p2 – p1 is very unsatisfactory.
• To get a better understanding of these problems, we will go back to the triangle

program example. DD-Path of triangle given below.

[10] CO1 L2

• We are dealing with code-level dependencies, which are incompatible with

the latent assumption that basis paths are independent.
• McCabe’s procedure successfully identifies basis paths that are topologically
independent.

5 Define DD path graph. Draw DD path graph for triangle program problem.

Explanation: 3Marks

Diagram: 5Marks

DD path Table: 2Marks

Definition:
Given a program written in an imperative language, its DD-path graph is the
directed graph in which nodes are DD-paths of its program graph, and edges
represent control flow between successor DD-paths.

DD Path Graph for Triangle Problem

[10] CO1 L2

DD path Table

Nodes DD path Case of definition

4 First 1
5-8 A 5
9 B 3
10 C 4
11 D 4
12 E 3
13 F 3

14 G 3
15 H 4
16 I 3
17 J 4
18 K 4
19 L 3
20 M 3
21 N 4
22 O 3
23 Last 2

6 Consider the following C function which encodes the string in the following manner.
If the string character is + or
- or *, it is replaced with space ' ‘, if it is uppercase character, it is replaced with
lowercase. Other alphanumeric
characters are simply copied in destination string. Draw the control flow graph for the
program. Find out the
statement coverage and node coverage % from control flow graph for the following
test suite T0=
{"test”, “test**ing", "test+-"}

10 CO3,
CO4

L3

1. const char* encode (char *str) {
2. int i = 0;
3. char *str1=str;
4. char en_str[25];
5. while (str1[i] != '\0') {

 6. if(str1[i]=='*'|| str1[i]=='+'||str1[i] =='-')
 7. en_str[i] =' ';
 8. else if(str1[i]>=65 && str1[i]<=90)
 9. en_str[i]=str1[i]+32;
 10. else
 11. en_str[i]=str1[i];
 12. i++;
 13.}
 14. en_str[i]='\0';
 15. return (en_str);
 }

Statement Coverage and Node Coverage %: 3Marks

Control Flow Graph: 7Marks

Statement Coverage and Node Coverage %
Number of nodes = 2
Number of statements = 12

Given test suite = <’’test’’, test ** ing”, “test+-“}
Test suite does not contain special symbols, upper case letters
It will not visit F node
Statement coverage = 11/12 = 91.6%
Node coverage = 8/9 = 88.8%

Control flow graph

