

					* + CELEBRA	INSTITU					
			Assessment Test 2 Scheme of Evalua		<u>022</u>						
Sub:	DATA MINING	AND DATA WAREHOU		Sub Code:	18CS641	Bra	anch:	ISE			
Date:	09/06/2022	Duration: 90 min's	Max Marks: 50	Sem/Sec:	VI / A	, B &	kС		OE	3E	
Answer any FIVE FULL Questions									СО	RBT	
		allenges that motivat	-		e		[()5]	CO2	L2	
	Scheme: List an Solution:	d Explanation of each	challenge carries I	Mark ea	ch.						
		n Dimensionality, Hete , Non-traditional Anal	•	nplex Data	a, Data Owner	rship)				
		ferentiate between ROLAP vs MOLAP vs HOLAP.)5]	CO2	L1	
	Comparison	MOLAP	ROLAP	HOLAP)						
	Meaning	Multi-Dimensional	Relational Online		Hybrid Online						
	Ū	Online Analytical	Analytical		cal Processing						
		Processing	Processing		-						
	Data Storage	It stores data in a	lt stores data in a	It stores	s data in a						
		multi-dimensional database.	relational database	e. relation	al database						
	Technique	It utilizes the Sparse	It employs	lt uses a	a combination						
		Matrix technique.	Structured Query	of SQL	and Sparse						
			Language (SQL).	Matrix t	echnique.						
	Volume of	It can process a	It processes	lt can p	rocess huge						
	data	limited volume of data.	enormous data.	volume	s of data.						
	Designed	The multi-	The multi-	The mu	lti-dimensiona	l					
	view	dimensional view is static.	dimensional view i dynamic.	s view is	dynamic.						
	Data	lt arranges data in	lt arranges data <mark>i</mark> r	n There is	a multi-						
	arrangement	data cubes.	rows and columns (tables).		ional ment of data						

Explain any 5 data pre-processing methods with examples.	[10]	CO2	
Scheme: Explanation of any 5 data pre-processing carries 2 Marks each.			
Solution:			
• Aggregation • Sampling • Dimensionality Reduction • Feature subset selection •			
Feature creation • Discretization and Binarization • Attribute Transformation			
Aggregation			
□ Combining two or more attributes (or objects) into a single attribute (or object)			
Purpose:			
o Data reduction			
 Reduce the number of attributes or objects 			
o Change of scale			
 Aggregated data tends to have less variability 			
o More "stable" data			
George Para			
Sampling □ Sampling is the main technique employed for data selection.			
\sqcap Selecting a subset of the data objects to be analyzed			
\sqcap It is often used for both the preliminary investigation of the data and the final data analysis.			
□ Statisticians sample because obtaining the entire set of data of interest is too expensive or			
time consuming.			
Dimensionality Reduction:			
 A key benefit is that many data mining algorithms work better if the dimensionality the 			
number of attributes in the data-is lower.			
 This is partly because dimensionality reduction can eliminate irrelevant features and 			
reduce noise			
Purpose:			
o Avoid curse of dimensionality			
 Reduce amount of time and memory required by data mining algorithms 			
o Allow data to be more easily visualized			
o May help to eliminate irrelevant features or reduce noise			
Feature Subset Selection:			
Another way to reduce dimensionality of data			
 Use only a subset of the features Redundant and irrelevant features can reduce classification accuracy and the quality of 			
the clusters that are found.			
Redundant features			
 Duplicate much or all of the information contained in one or more other attributes Example: purchase price of a product and the amount of sales tax paid almost same 			
Irrelevant features			
 Contain no information that is useful for the data mining task at hand Example: students' ID is often irrelevant to the task of predicting students' GPA 			
Feature Creation			
\sqcap Create new attributes that can capture the important information in a data set much more			
efficiently than the original attributes			
Three general methodologies:			
□ Feature Extraction- Example: extracting edges from images			
domain-specific-			
Mapping Data to New Space			
Example: Fourier and wavelet analysis			1

³ For the following vectors, x and y, calculate the indicated similarity or distant			
	[10]	CO2	L3
measures.			
Scheme: Computation of Cosine, Correlation,Euclidean,Jaccard carries 4,3,4 Marks Each Solution:	1.		
a. $x = (0, 1, 0, 1), y = (1, 0, 1, 0)$ cosine, correlation, Euclidean, Jaccard			
$\cos(x, y) = 0$, $\operatorname{corr}(x, y) = -1$, $\operatorname{Euclidean}(x, y) = 2$, $\operatorname{Jaccard}(x, y)=0$			
b. $x = (0, -1, 0, 1), y = (1, 0, -1, 0)$ cosine, correlation, Euclidean			
$\cos(x, y) = 0$, $\operatorname{corr}(x, y) = 0$, $\operatorname{Euclidean}(x, y) = 2$			
c. $x = (1, 1, 0, 1, 0, 1), y = (1, 1, 1, 0, 0, 1)$ cosine, correlation, Jaccard			
$\cos(x, y) = 0.75$, $\operatorname{corr}(x, y) = 0.25$, $\operatorname{Jaccard}(x, y) = 0.6$			
4 (a) Discuss whether or not each of the following activities is a data mining task.	[06]	CO2	L2
Scheme: Defining each statement is a data mining Task or not with conclusion carr	ries		
1 Mark each.			
Solution:			
a. Dividing the customers of a company according to their gender.			
No. This is a simple database query.			
b. Dividing the customers of a company according to their profitability.			
No. This is an accounting calculation, followed by the application o	fa		
threshold. However, predicting the profitability of a new customer wo			
be data mining.			
c. Computing the total sales of a company.			
No. Again, this is simple accounting.			
d. Sorting a student database based on student identification numbers.			
No. Again, this is a simple database query.			
e. Predicting the outcomes of tossing a (fair) pair of dice.			
No. Since the die is fair, this is a probability calculation.			
f. Predicting the future stock price of a company using historical records.			
Yes. We would attempt to create a model that can predict the continue	0116		
value of the stock price.	Jus		
(b) Classify the following attributes as binary, discrete, or continuous. Also class	sifv [04]	CO2	L2
them as qualitative (nominal or ordinal) or quantitative (interval or ratio).		002	
Scheme: Defining each statement as a type of attributes with conclusion carr	rias		
1 Mark each.	105		
Solution:			
a. Brightness as measured by people's judgments.			
Discrete, qualitative, ordinal h Angles of measured in degrees between 0^0 and 260^0			
b. Angles as measured in degrees between 0^0 and 360^0 .			
Continuous, quantitative, ratio			
c. Bronze, Silver, and Gold medals as awarded at the Olympics.			
Discrete, qualitative, ordinal			
d. Height above sea level.			
Continuous, quantitative, interval/ratio (depends on whether sea leve	l is		
regarded as an arbitrary origin)			

Faculty Signature

CCI Signature

HOD Signature