

Answer Key

Internal Assessment Test 2 – Set 2 – June 2022

Sub: Cloud Computing and its Applications Sub Code: 18CS643 Branch ISE

Date: 09/06/2022 Duration: 90 min’s Max Marks: 50 Sem/Sec: VI / A, B and C OBE

Answer any FIVE questions MARKS CO RBT

1

Elucidate the broad definition of Cloud Computing. Explain the Cloud Reference

Model with a suitable diagram.

 A broad definition of the phenomenon could be as follows:
“Cloud computing is a utility- oriented and Internet-centric way of delivering IT services

on demand. These services cover the entire computing stack: from the hardware

infrastructure packaged as a set of virtual machines to software services such as

development platforms and distributed applications.”

The Cloud Reference Model

Cloud computing supports any IT service that can be consumed as a utility and

delivered through a network, most likely the Internet. Such characterization

includes quite different aspects: infrastructure, development platforms, application

and services.

Architecture

 It is possible to organize all the concrete realizations of cloud computing

into a layered view covering the entire stack (see Figure 4.1), from hardware

appliances to software systems. Cloud resources are harnessed to offer “computing

horsepower” required for providing services. Cloud infrastructure can be

heterogeneous in nature because a variety of resources, such as clusters and even

networked PCs, can be used to build it.

 The physical infrastructure is managed by the core middleware, the

objectives of which are to provide an appropriate runtime environment for

10 CO2 L2

applications and to best utilize resources. At the bottom of the stack, virtualization

technologies are used to guarantee runtime environment customization, application

isolation, sandboxing, and quality of service. Hardware virtualization is most

commonly used at this level. Hypervisors manage the pool of resources and expose

the distributed infrastructure as a collection of virtual machines. By using virtual

machine technology it is possible to finely partition the hardware resources such as

CPU and memory and to virtualize specific devices, thus meeting the requirements

of users and applications. This solution is generally paired with storage and network

virtualization strategies, which allow the infrastructure to be completely virtualized

and controlled.

 Infrastructure management is the key function of core middleware, which

supports capabilities such as negotiation of the quality of service, admission

control, execution management and monitoring, accounting, and billing.

The combination of cloud hosting platforms and resources is generally classified as

an Infrastructure-as-a-Service (IaaS) solution. We can organize the different

examples of IaaS into two categories: Some of them provide both the management

layer and the physical infrastructure; others provide only the management layer

(IaaS (M)).

 In this second case, the management layer is often integrated with other

IaaS solutions that provide physical infrastructure and adds value to them.

IaaS solutions are suitable for designing the system infrastructure but provide

limited services to build applications. Such service is provided by cloud

programming environments and tools, which form a new layer for offering users a

development platform for applications.

 The range of tools include Web-based interfaces, command-line tools, and

frameworks for concurrent and distributed programming. In this scenario, users

develop their applications specifically for the cloud by using the API exposed at

the user-level middleware. For this reason, this approach is also known as Platform-

as-a-Service (PaaS) because the service offered to the user is a development

platform rather than an infrastructure.

 The top layer of the reference model depicted in Figure 4.1 contains

services delivered at the application level. These are mostly referred to as Software-

as -a-Service (SaaS). In most cases these are Web-based applications that rely on

the cloud to provide service to end users. The horsepower of the cloud provided by

IaaS and PaaS solutions allows independent software vendors to deliver their

application services over the Internet.

 Table 4.1 summarizes the characteristics of the three major categories

used to classify cloud computing solutions. In the following section, we briefly

discuss these characteristics along with some references to practical

implementations.

2

Analyze and explain the open challenges facing the Cloud Computing paradigm

with suitable examples.

 Cloud computing presents many challenges for industry and academia.

There is a significant amount of work in academia focused on defining the

challenges brought by this phenomenon.

In this section, we highlight the most important ones.

• Cloud definition

• Cloud interoperability and standards

• Scalability and fault tolerance

• Security, trust, and privacy

• Organizational aspects

Cloud definition

 There have been several attempts made to define cloud computing and

to provide a classification of all the services and technologies identified as such.

NSIT characterizes cloud computing as on-demand self-service, broad network

access, resource-pooling, rapid elasticity, and measured service; classifies services

as SaaS, PaaS, and IaaS; and categorizes deployment models as public, private,

community, and hybrid clouds.

 Alternative taxonomies for cloud services. David Linthicum, founder of

Blue Mountains Labs, provides a more detailed classification, which comprehends

10 different classes and better suits the vision of cloud computing within the

enterprise.

 These characterizations and taxonomies reflect what is meant by cloud

computing at the present time, but being in its infancy the phenomenon is constantly

evolving, and the same will happen to the attempts to capture the real nature of

cloud computing.

Cloud interoperability and standards

 To fully realize this goal, introducing standards and allowing

interoperability between solutions offered by different vendors are objectives of

fundamental importance. Vendor lock-in constitutes one of the major strategic

barriers against the seamless adoption of cloud computing at all stages.

10 CO2 L3

 The presence of standards that are actually implemented and adopted

in the cloud computing community could give room for interoperability and then

lessen the risks resulting from vendor lock-in.

 The first steps toward a standardization process have been made, and

a few organizations, such as the Cloud Computing Interoperability Forum (CCIF),

the Open Cloud Consortium, and the DMTF Cloud Standards Incubator, are leading

the path.

 Another interesting initiative is the Open Cloud Manifesto, which

embodies the point of view of various stakeholders on the benefits of open

standards in the field.

 The Open Virtualization Format (OVF) is an attempt to provide a

common format for storing the information and metadata describing a virtual

machine image. Even though the OVF provides a full specification for packaging

and distributing virtual machine images in completely platform-independent

fashion, it is supported by few vendors that use it to import static virtual machine

images.

Scalability and fault tolerance

 The ability to scale on demand constitutes one of the most attractive

features of cloud computing. Clouds allow scaling beyond the limits of the existing

in-house IT resources, whether they are infrastructure (compute and storage) or

applications services. To implement such a capability, the cloud middleware has to

be designed with the principle of scalability along different dimensions in mind—

for example, performance, size, and load.

 The cloud middleware manages a huge number of resource and users,

which rely on the cloud to obtain the horsepower. In this scenario, the ability to

tolerate failure becomes fundamental, sometimes even more important than

providing an extremely efficient and optimized system. Hence, the challenge in this

case is designing highly scalable and fault-tolerant systems that areeasy to manage

and at the same time provide competitive performance.

Security, trust, and privacy

 Security, trust, and privacy issues are major obstacles for massive

adoption of cloud computing. The traditional cryptographic technologies are used

to prevent data tampering and access to sensi-tive information. The massive use of

virtualization technologies exposes the existing system to new threats, which

previously were not considered applicable.

 Information can be stored within a cloud storage facility using the

most advanced technology in cryptography to protect data and then be considered

safe from any attempt to access it without the required permissions.

 The lack of control over data and processes also poses severe

problems for the trust we give to the cloud service provider and the level of privacy

we want to have for our data.

Organizational aspects

 More precisely, storage, compute power, network infrastructure, and

applications are delivered as metered services over the Internet. This introduces a

billing model that is new within typical enterprise IT departments, which requires

a certain level of cultural and organizational process maturity.

 In particular, the following questions have to be considered:

• What is the new role of the IT department in an enterprise that completely or

significantly relies on the cloud?

• How will the compliance department perform its activity when there is a

considerable lack of control over application workflows?

• What are the implications (political, legal, etc.) for organizations that lose control

over some aspects of their services?

• What will be the perception of the end users of such services?

 From an organizational point of view, the lack of control over the

management of data and processes poses not only security threats but also new

problems that previously did not exist.

3

What is Aneka Cloud? Briefly explain the different types of application services

offered by Aneka Cloud.

•Aneka is a software platform for developing cloud computing applications.

•Aneka is a pure PaaS solution for cloud computing.

•Aneka is a cloud middleware product that can be deployed on a heterogeneous set

of resources: Like: a network of computers, a multi core server, data centers, virtual

cloud infrastructures, or a mixture of all

•The framework provides both middleware for managing and scaling distributed

applications and an extensible set of APIs for developing them.

Application services

 Application Services manage the execution of applications and

constitute a layer that differentiates according to the specific programming model

used for developing distributed applications on top of Aneka.

Two types of services are:

1. The Scheduling Service

 Scheduling Services are in charge of planning the execution of

distributed applications on top of Aneka and governing the allocation of jobs

composing an application to nodes. Common tasks that are performed by the

scheduling component are the following:

o Job to node mapping

o Rescheduling of failed jobs

o Job status monitoring

o Application status monitoring

2. The Execution Service

 Execution Services control the execution of single jobs that compose

applications. They are in charge of setting up the runtime environment hosting the

execution of jobs.

 Some of the common operations that apply across all the range of

supported models are:

• Unpacking the jobs received from the scheduler

• Retrieval of input files required for job execution

• Sandboxed execution of jobs

• Submission of output files at the end of execution

• Execution failure management (i.e., capturing sufficient contextual information

useful to identify the nature of the failure)

• Performance monitoring

10 CO3 L2

• Packing jobs and sending them back to the scheduler

4

Explain the domain and functional decomposition models of parallelizing tasks in

Cloud Computing with suitable examples

Domain decomposition

 Domain decomposition is the process of identifying patterns of

functionally repetitive, but independent, computation on data. This is the most

common type of decomposition in the case of throughput computing, and it relates

to the identification of repetitive calculations required for solving a problem. The

master-slave model is a quite common organization for these scenarios:

• The system is divided into two major code segments.

• One code segment contains the decomposition and coordination logic.

• Another code segment contains the repetitive computation to perform.

• A master thread executes the first code segment.

• As a result of the master thread execution, as many slave threads as needed are

created to execute the repetitive computation.

• The collection of the results from each of the slave threads and an eventual

composition of the final result are performed by the master thread.

Embarrassingly parallel problems constitute the easiest case for parallelization

because there is no need to synchronize different threads that do not share any data.

Embarrassingly parallel problems are quite common, they are based on the strong

assumption that at each of the iterations of the decomposition method, it is possible

to isolate an independent unit of work. This is what makes it possible to obtain a

high computing throughput. If the values of all the iterations are dependent on some

of the values obtained in the previous iterations, the problem is said to be

inherently sequential. Figure 6.3 provides a schematic representation of the

decomposition of embarrassingly parallel and inherently sequential problems.

 The matrix product computes each element of the resulting matrix as

a linear combination of the corresponding row and column of the first and second

input matrices, respectively. The formula that applies for each of the resulting

matrix elements is the following:

Two conditions hold in order to perform a matrix product:

• Input matrices must contain values of a comparable nature for which the scalar

product is defined.

• The number of columns in the first matrix must match the number of rows of the

second matrix.

10 CO2 L2

 The problem is embarrassingly parallel, and we can logically

organize the multithreaded program in the following steps:

• Define a function that performs the computation of the single element of the

resulting matrix by implementing the previous equation.

• Create a double for loop (the first index iterates over the rows of the first matrix

and the second over the columns of the second matrix) that spawns a thread to

compute the elements of the resulting matrix.

• Join all the threads for completion, and compose the resulting matrix.

Functional decomposition

 Functional decomposition is the process of identifying functionally

distinct but independent computations. The focus here is on the type of computation

rather than on the data manipulated by the computation.

 This kind of decomposition is less common and does not lead to the

creation of a large number of threads, since the different computations that are

performed by a single program are limited. Functional decomposition leads to a

natural decomposition of the problem in separate units of work. Figure 6.5 provides

a pictorial view of how decomposition operates and allows parallelization.

 The problems that are subject to functional decomposition can also

require a composition phase in which the outcomes of each of the independent units

of work are composed together.

 In the following, we show a very simple example of how a

mathematical problem can be parallelized using functional decomposition.

Suppose, for example, that we need to calculate the value of the following function

for a given value of x:

f(x) = sin(x) + cos(x) + tan(x)

 Once the value of x has been set, the three different operations can

be performed independently of each other. This is an example of functional

decomposition because the entire problem can be separated into three distinct

operations.

5

Analyze and elucidate the limitations of Aneka thread model compared to the

normal thread model for running distributed applications.

 The pictures of Aneka thread model and the related normal thread model

are given below:

10 CO3 L3

Limitations of Aneka Thread model

• Even though a distributed facility can dramatically increase the degree of

parallelism of applications, its use comes with a cost in term of application

design and performance.

• For example, since the different units of work are not executing within the same

process space but on different nodes both the code and the data needs to be

moved to a different execution context.

• the same happens for results that need to be collected remotely and brought back

to the master process.

• Moreover, if there is any communication among the different workers it is

necessary to redesign the communication model eventually by leveraging the

APIs provided by the middleware if any.

• In other words, the transition from a single process multi-threaded execution to

a distributed execution is not transparent and application redesign and re-

implementation are often required.

• The amount of effort required to convert an application often depends on the

facilities offered by the middleware managing the distributed infrastructure.

• Aneka, as a middleware for managing clusters, Grids, and Clouds, provides

developers with advanced capabilities for implementing distributed applications.

• In particular, it takes traditional thread programming a step further. It lets you

write multi-threaded applications in the traditional way, with the added twist that

each of these threads can now be executed outside the parent process and on a

separate machine.

• In reality, these “threads” are independent processes executing on different

nodes, and do not share memory or other resources, but they allow you to write

applications using the same thread constructs for concurrency and

synchronization as with traditional threads.

• Aneka threads, as they are called, let you easily port existing multi-threaded

compute intensive applications to distributed versions that can run faster by

utilizing multiple machines simultaneously, with a minimum conversion effort.

6

What are the differences between embarrassingly parallel and parameter sweep

applications? Explain the Aneka task programming model with a suitable diagram.

Embarrassingly parallel applications

 Embarrassingly parallel applications constitute the most simple and

intuitive category of distributed applications. The tasks might be of the same type

or of different types, and they do not need to communicate among themselves. This

category of applications is supported by the majority of the frameworks for

distributed computing. Since tasks do not need to communicate, there is a lot of

freedom regarding the way they are scheduled. Tasks can be executed in any order,

and there is no specific requirement for tasks to be executed at the same time.

 Scheduling these applications is simplified and concerned with the

optimal mapping of tasks to available resources. Frameworks and tools supporting

embarrassingly parallel applications are the Globus Toolkit, BOINC, and Aneka.

There are several problems: image and video rendering, evolutionary optimization,

and model forecasting. In image and video rendering the task is represented by the

rendering of a pixel or a frame, respectively.

 For evolutionary optimization meta heuristics, a task is identified by

a single run of the algorithm with a given parameter set. The same applies to model

forecasting applications. In general, scientific applications constitute a considerable

source of embarrassingly parallel applications.

Parameter sweep applications

 Parameter sweep applications are a specific class of embarrassingly

parallel applications for which the tasks are identical in their nature and differ only

by the specific parameters used to execute. Parameter sweep applications are

identified by a template task and a set of parameters. The template task defines the

operations that will be performed on the remote node for the execution of tasks.

The parameter set identifies the combination of variables whose assignments

specialize the template task into a specific instance. Any distributed computing

framework that provides support for embarrassingly parallel applications can also

support the execution of parameter sweep applications.

 The only difference is that the tasks that will be executed are

generated by iterating over all the possible and admissible combinations of

parameters. Nimrod/G is natively designed to support the execution of parameter

sweep applications, and Aneka provides client-based tools for visually composing

a template task, defining parameters, and iterating over all the possible

combinations. A plethora of applications fall into this category. Scientific

computing domain: evolutionary optimization algorithms, weather-forecasting

models, computational fluid dynamics applications, Monte Carlo methods. For

example, in the case of evolutionary algorithms it is possible to identify the domain

of the applications as a combination of the relevant parameters.

10 CO2 L2

 For genetic algorithms these might be the number of individuals of

the population used by the optimizer and the number of generations for which to

run the optimizer.

Aneka Task Model

 Aneka allows different kind of applications to be executed on the

same grid infrastructure. In order to support such flexibility it provides different

abstractions through which it is possible to implement distributed applications.

These abstractions map to different execution models. Currently Aneka supports

three different execution models:

• Task Execution Model

• Thread Execution Model

• MapReduce Execution Model

 Each execution model is composed by four different elements: the

WorkUnit, the Scheduler, the Executor, and the Manager. The WorkUnit defines

the granularity of the model; in other words, it defines the smallest computational

unit that is directly handled by the Aneka infrastructure. Within Aneka, a collection

of related work units define an application. The Scheduler is responsible for

organizing the execution of work units composing the applications, dispatching

them to different nodes, getting back the results, and providing them to the end user.

The Executor is responsible for actually executing one or more work units, while

the Manager is the client component which interacts with the Aneka system to start

an application and collects the results. A view of the system is given in Figure 1.

 Hence, for the Task Model there will be a specific WorkUnit called

AnekaTask, a Task Scheduler, a Task Executor, and a Task Manager. In order to

develop an application for Aneka the user does not have to know all these

components; Aneka handles a lot of the work by itself without the user contribution.

Only few things users are required to know:

• how to define AnekaTask instances specific to the application that is being

defined;

• how to create a AnekaApplication and use it for task submission;

• how to control the AnekaApplication and collect the results.

 This holds not only for the Task Model but for all execution models

supported by the Aneka.

