

USN

Internal Assessment Test 2 – August 2022

Sub: Operating Systems Sub Code: 18CS43 Branch: CSE

Date: 04/08/22 Duration: 90 minutes Max Marks: 50 Sem / Sec: IV / A, B, C OBE

Answer any FIVE FULL Questions MARKS CO RBT

1

a

What is Critical Section Problem? Draw the general structure of a process with

critical section. If you are to provide a solution for Critical Section Problem,

explain the requirements that you have to satisfy.

[5] 2 L3

b

What is Semaphore? What are its types? Explain how it has to be implemented to

solve the problem of Process Synchronization.
[5] 2 L2

2

a How Semaphores provide solution for Readers Writers Problem [5] 2 L2

b

Help the Dining Philosophers to solve the problem of synchronization using

Monitors.
[5] 2 L2

3

a

Consider the traffic deadlock depicted in the figure.

What is a deadlock? Show that the four necessary conditions for deadlock indeed

hold in this example.

[5] 2 L3

b

Draw and Justify Resource Allocation Graph

(i) With Deadlock

(ii) With Cycle but No Deadlock

[5] 2 L2

4 a

Answer the following questions using the banker's algorithm:

(i) What is the content of the Matrix Need?

(ii) Is the system in a safe state?

(iii) If a request (0,4,2,0) from process P1 be granted immediately?

[5] 2 L3

b

Consider the resource allocation graph in the figure-

 Find if the system is in a deadlock state otherwise find a safe sequence.

[5] 2 L3

5
a

Explain the various steps of Address Binding with neat diagram (3)

Differentiate Internal and External Fragmentation. (2)
[5] 3 L2

b Illustrate Contiguous Memory Allocation with example. [5] 3 L2

6

a Elucidate Paging as a Memory Management Scheme [5] 3 L2

b

What are Translation Load aside Buffer? Explain TLB in detail with a simple

paging system with neat diagram.
[5] 3 L2

CI CCI HoD

--All the Best--

CO-PO Mapping

Course Outcomes

Module

s

covered

P

O

1

P

O

2

P

O

3

P

O

4

P

O

5

P

O

6

P

O

7

P

O

8

P

O

9

P

O

1

0

P

O

1

1

P

O

1

2

P

S

O

1

P

S

O

2

P

S

O

3

P

S

O

4

CO1
Describe the Operating System

Structure and Services.
1 3 - - - - - - - - - - 3 - 2 - -

CO2

Summarize the Process

Management concepts like

Processes, Threads, CPU

Scheduling, Process

Synchronization and Deadlocks

1, 2 3 2 2 - - - - - - - - 3 - 2 - -

CO3

Interpret the Memory

Management concepts with

respect to Main Memory and

Virtual Memory.

3, 4 3 2 2 - - - - - - - - 3 - 2 - -

CO4

Discuss the Storage

Management concepts like File-

System Interface, File-System

Implementation and Mass-

Storage Structure

4, 5 3 2 2 - - - - - - - - 3 - 2 - -

CO 5

Elucidate the Protection features

in Operating System and case

study in Linux OS.

5 3 2 2 - - - - - - - - 3 - 2 - -

USN

Internal Assessment Test 2 – August 2022

Sub: Operating Systems Sub Code: 18CS43 Branch: CSE

Date: 04/08/22 Duration: 90 minutes Max Marks: 50 Sem / Sec: IV / A, B, C OBE

Answer any FIVE FULL Questions MARKS CO RBT

1

a

What is Critical Section Problem? Draw the general structure of a process with

critical section. If you are to provide a solution for Critical Section Problem, explain

the requirements that you have to satisfy.

A solution to the problem must satisfy the following 3 requirements:

 1. Mutual Exclusion :Only one process can be in its critical-section.

2. Progress : Only processes that are not in their remainder-section can enter their critical

section, and the selection of a process cannot be postponed indefinitely.

3. Bounded Waiting : There must be a bound on the number of times that other processes

are allowed to enter their critical-sections after a process has made a request to enter its

critical-section and before the request is granted.

[5] 2 L3

b

What is Semaphore? What are its types? Explain how it has to be implemented to

solve the problem of Process Synchronization.

Counting Semaphore • The value of a semaphore can range over an unrestricted domain

Binary Semaphore • The value of a semaphore can range only between 0 and 1. • On some

systems, binary semaphores are known as mutex locks, as they are locks that provide

mutual-exclusion.

1) Solution for Critical-section Problem using Binary Semaphores

Binary semaphores can be used to solve the critical-section problem for multiple

processes.

The ‘n’ processes share a semaphore mutex initialized to 1 (Figure 3.9).

[5] 2 L2

semaphores 2) Use of counting semaphores

• Counting semaphores can be used to control access to a given resource consisting of a

finite number o£ instances.

• The semaphore is initialized to the number of resources available. • Each process that

wishes to use a resource performs a wait() operation on the semaphore (thereby

decrementing the count).

• When a process releases a resource, it performs a signal() operation (incrementing the

count).

• When the count for the semaphore goes to 0, all resources are being used.

 • After that, processes that wish to use a resource will block until the count becomes

greater than 0.

2) Solving synchronization problems

• Semaphores can also be used to solve synchronization problems.

 • For example, consider 2 concurrently running-processes:

Suppose we require that S2 be executed only after S1 has completed.

We can implement this scheme readily

by letting P1 and P2 share a common semaphore synch initialized to 0,

and by inserting the following statements in process P1

 and the following statements in process P2

• Because synch is initialized to 0, P2 will execute S2 only after P1 has invoked signal

(synch), which is after statement S1 has been executed.

Semaphore Implementation

• Main disadvantage of semaphore:

 → Busy waiting.

• Busy waiting: While a process is in its critical-section, any other process that tries to

enter its critical-section must loop continuously in the entry code.

 • Busy waiting wastes CPU cycles that some other process might be able to use

productively.

• This type of semaphore is also called a spinlock (because the process "spins" while

waiting for the lock).

 • To overcome busy waiting, we can modify the definition of the wait() and signal()

as follows:

 → When a process executes the wait() and finds that the semaphore-value is not

positive, it must wait. However, rather than engaging in busy waiting, the process can

block itself.

→ A process that is blocked (waiting on a semaphore S) should be restarted when

some other process executes a signal(). The process is restarted by a wakeup().

• We assume 2 simple operations: → block() suspends the process that invokes it.

→ wakeup(P) resumes the execution of a blocked process P.

• We define a semaphore as follows:

2 a

How Semaphores provide solution for Readers Writers Problem

The reader processes share the following data structures:

semaphore mutex, wrt;

 int readcount;

The semaphores mutex and wrt are initialized to 1; readcount is initialized to 0.

The semaphore wrt is common to both reader and writer processes. The mutex

semaphore is used to ensure mutual exclusion when the variable readcount is updated.

The readcount variable keeps track of how many processes are currently reading the

object.

The semaphore wrt functions as a mutual-exclusion semaphore for the writers. It is also

used by the first or last reader that enters or exits the critical section. It is not used by

readers who enter or exit while other readers are in their critical sections.

If a writer is in the critical section and n readers are waiting, then one reader is queued on

wrt, and n-1 readers are queued on mutex.

[5] 2 L2

When a writer executes signal (wrt), we may resume the execution of either the waiting

readers or a single waiting writer

//Writer Process

do

{ wait(wrt); // writing is performed

signal (wrt) ,-

}while (TRUE);

//Reader Process do {

 wait(mutex); readcount + + ;

if (readcount == 1) wait(wrt);

signal(mutex); // reading is performed wait (mutex) ,- readcount--;

 if (readcount == 0) signal(wrt);

signal(mutex); }

while (TRUE);

b

Help the Dining Philosophers to solve the problem of synchronization using

Monitors.

This solution imposes the restriction that a philosopher may pick up her chopsticks only if

both of them are available. To code this solution, we need to distinguish among three

states in which we may find a philosopher. For this purpose, we introduce the following

data structure:

enum {thinking, hungry, eating} state[5];

 thinking: State when philosopher does not need chopsticks

hungry: State when philosopher needs chopsticks, but didn’t obtain them

 eating: State when philosopher needs chopsticks, and has obtained them

Philosopher i can set the variable state[i] = eating only if her two neighbours are not

eating:

(state[(i+4) °/» 5] != eating) and (state[(i+1) % 5] != eating).

We also need to declare condition self [5] where philosopher i can wait when she is

hungry but is unable to obtain the chopsticks she needs.

The following is the solution for each philosopher. Each philosopher i must invoke the

operations pickup () and putdownO in the following sequence:

dp.pickup(i); //eat

dp.putdown(i);

The monitor implementation is as follows

monitor dp

 enum {THINKING, HUNGRY, EATING}state [5]

condition self [5] ;

void pickup(int i)

{

state [i] = HUNGRY;

test (i) ;

[5] 2 L2

if (state [i] != EATING)

 self [i] .wait() ;

}

void putdown(int i)

{

state til = THINKING;

test((i + 4) % 5} ;

 test((i + 1) % 5) ;

 }

void test(int i)

{

if ((state [(i + 4) % 5] != EATING) && (state [i] == HUNGRY) && (state [(i + 1) % 5]

!= EATING))

 {

state [i] = EATING;

self [i] .signal() ;

}

}

initialization-code ()

{

 for (int i = 0; i < 5; i++)

 state [i] = THINKING;

 }

}

3 a

Consider the traffic deadlock depicted in the figure.

What is a deadlock? Show that the four necessary conditions for deadlock indeed hold in

this example.

In a multiprogramming environment, several processes may compete for a finite number

of resources. A process requests resources; and if the resources are not available at that

time, the process enters a waiting state. Sometimes, a waiting process is never again able

to change state, because the resources it has requested

are held by other waiting processes. This situation is called a deadlock. Characteristics (or

[5] 2 L3

Necessary conditions

A deadlock situation can arise if the following four conditions hold simultaneously in a

system:

1. Mutual exclusion. At least one resource must be held in a non-sharable mode; that is,

only one process at a time can use the resource. If another process requests that resource,

the requesting process must be delayed until the resource has been released.

2. Hold and wait. A process must be holding at least one resource and waiting to acquire

additional resources that are currently being held by other processes.

 3. No preemption. Resources cannot be preempted. That is, a resource can be released

only voluntarily by the process holding it, after that process has completed its task. 4.

Circular wait. A set {P0, P1, ..., Pn} of waiting processes must exist such that P0 is

waiting for a resource held by P1, P1 is waiting for a resource held by P2, •••, Pn-1 is

waiting for a resource held by Pn, and Pn is waiting for a resource held by P0.

Methods to handle deadlocks: Prevention, Avoidance, Detect and recovery

b

Draw and Justify Resource Allocation Graph

(i) With Deadlock

(ii) With Cycle but No Deadlock

Deadlocks can be described more precisely in terms of a directed graph called a system

resource-allocation graph. This graph consists of a set of vertices V and a set of edges E.

The set of vertices V is partitioned into two different types of nodes: P = {P1, P2,…, Pn},

the set consisting of all the active processes in the system, and R = {R1, R2, … Rm}, the

set consisting of all resource types in the system.

Take example on the left. Here all the resources are part of a cycle. From this, we learn

that the system is in a deadlocked state. Take example on the right. Here, even though all

the resources are occupied by all the processes, not all resources are part of a cycle.

Hence, no deadlock.

[5] 2 L2

4 a

Answer the following questions using the banker's algorithm:

(i) What is the content of the Matrix Need?

(ii) Is the system in a safe state?

(iii) If a request (0,4,2,0) from process P1 be granted immediately?

[5]
2 L3

b

Consider the resource allocation graph in the figure-

 Find if the system is in a deadlock state otherwise find a safe sequence.

[5] 2 L3

5 a

Explain the various steps of Address Binding with neat diagram (3)

User programs typically refer to memory addresses with symbolic names such as "i",

"count", and "average Temperature". These symbolic names must be mapped or bound to

physical memory addresses, which typically occurs in several stages:

Compile Time- If it is known at compile time where a program will reside in physical

memory, then absolute code can be generated by the compiler, containing actual physical

addresses. However if the load address changes at some later time, then the program will

have to be recompiled.

Load Time- If the location at which a program will be loaded is not known at compile

time, then the compiler must generate relocatable code, which references addresses

relative to the start of the program. If that starting address changes, then the program

must be reloaded but not recompiled.

o Execution Time- If a program can be moved around in memory during the course of its

execution, then binding must be delayed until execution time. Figure 8.3 shows the

various stages of the binding processes and the units involved in each stage

[5] 3 L2

Differentiate Internal and External Fragmentation. (2)

Internal Fragmentation External Fragmentation

Internal fragmentation is the wasted space

within each allocated block because of

rounding up from the actual requested

allocation to the allocation granularity.

External fragmentation is the various free

spaced holes that are generated in either

your memory or disk space. External

fragmented blocks are available for

allocation, but may be too small to be of

any use.

It occurs when fixed sized memory blocks

are allocated to the processes

It occurs when variable size memory

space are allocated to the processes

dynamically.

When the memory assigned to the process

is slightly larger than the memory

requested by the process this creates free

space in the allocated block causing

internal fragmentation.

When the process is removed from the

memory, it creates the free space in the

memory causing external fragmentation

Solution: The memory must be partitioned

into variable sized blocks and assign the

best fit block to the process.

Solution: Compaction, paging and

segmentation.

Example: Consider a multiplepartition

allocation scheme with a hole of 18,464

bytes. Suppose that the next process

requests 18,462 bytes. If we allocate

Example: First-fit and Best-fit strategies.

We could have a block of free (or wasted)

memory between every two processes. If

all these small pieces of memory were in

exactly the requested block, we are left

with a hole of 2 bytes.

one big free block instead, we might be

able to run several more processes.

b

Illustrate Contiguous Memory Allocation with example.

In Contiguous memory allocation which is a memory management technique,

whenever there is a request by the user process for the memory then a single section of

the contiguous memory block is given to that process according to its requirement.

Contiguous Memory allocation is achieved just by dividing the memory into the fixed-

sized partition.

The memory can be divided either in the fixed-sized partition or in the variable-sized

partition in order to allocate contiguous space to user processes.

It is important to note that these partitions are allocated to the processes as they arrive

and the partition that is allocated to the arrived process basically depends on the

algorithm followed.

If there is some wastage inside the partition then it is termed Internal Fragmentation.

[5] 3 L2

6 a

Elucidate Paging as a Memory Management Scheme

Paging is a memory-management scheme that permits the physical address space of a

process to be non-contiguous. Paging avoids the considerable problem of fitting memory

chunks of varying sizes onto the backing store. The basic method for implementing paging

involves breaking physical memory into fixed-sized blocks called frames and breaking

logical memory into blocks of the same size called pages. When a process is to be executed,

its pages are loaded into any available memory frames from the backing store. The backing

store is divided into fixed-sized blocks that are of the same size as the memory frames.

Every address generated by the CPU is divided into two parts: a page number (p) and a

page offset (d). The page number is used as an index into a page table. The page table

contains the base address of each page in physical memory. This base address is combined

with the page offset to define the physical memory address that is sent to the memory unit.

If the size of logical address space is 2m and a page size is 2n addressing units (bytes or

words), then the high-order m – n bits of a logical address designate the page number, and

the n low-order bits designate the page offset. Thus, the logical address is as follows:

where p is an index into the page table and d is the displacement within the page.

Logical address to physical address:

As a concrete (although minuscule) example, consider the memory in the Figure below.

Using a page size of 4 bytes and a physical memory of 32 bytes (8 pages), we show how the

user's view of memory can be mapped into physical memory. Logical address 0 is page 0,

offset 0. Indexing into the page table, we find that page 0 is in frame 5. Thus, logical

address 0 maps to physical address 20 (= (5 x 4) + 0). Logical address 3 (page 0, offset 3)

maps to physical address 23 (= (5x4) + 3). Logical address 4 is page 1, offset 0; according

to the page table, page 1 is mapped to frame 6. Thus, logical address 4 maps to physical

address 24 (= (6x4) + 0). Logical address 13 maps to physical address 9.

[5] 3 L2

b

What are Translation Load aside Buffer? Explain TLB in detail with a simple paging

system with neat diagram.

 b

What are Translation Load aside Buffer? Explain TLB in detail with a simple paging

system with neat diagram.

Translation look-aside buffers (TLBs) are a special, small, fast lookup hardware cache.

[5] 3 L2

[5] 3 L2

The TLB is associative, high-speed memory. Each entry in the TLB consists of two parts:

a key (or tag) and a value. When the associative memory is presented with an item, the

item is compared with all keys simultaneously. If the item is found, the corresponding

value field is returned. The search is fast; the hardware, however, is expensive. Typically,

the number of entries in a TLB is small, often numbering between 64 and 1,024. The TLB

is used with page tables in the following way. The TLB contains only a few of the page-

table entries. When a logical address is generated by the CPU, its page number is

presented to the TLB. If the page number is found, its frame number is immediately

available and is used to access memory. The whole task may take less than 10 percent

longer than it would if an unmapped memory reference were used. If the page number is

not in the TLB (known as a TLB miss), a memory reference to the page table must be

made. When the frame number is obtained, we can use it to access memory. In addition,

we add the page number and frame number to the TLB, so that they will be found quickly

on the next reference. If the TLB is already full of entries, the operating system must

select one for replacement. Replacement policies range from least recently used (LRU) to

random. Furthermore, some TLBs allow entries to be wired down, meaning that they

cannot be removed from the TLB. Typically, TLB entries for kernel code are wired down.

CI CCI HoD

--All the Best--

CO-PO Mapping

Course Outcomes

Module

s

covered

P

O

1

P

O

2

P

O

3

P

O

4

P

O

5

P

O

6

P

O

7

P

O

8

P

O

9

P

O

1

0

P

O

1

1

P

O

1

2

P

S

O

1

P

S

O

2

P

S

O

3

P

S

O

4

CO1
Describe the Operating System

Structure and Services.
1 3 - - - - - - - - - - 3 - 2 - -

CO2

Summarize the Process

Management concepts like

Processes, Threads, CPU

Scheduling, Process

Synchronization and Deadlocks

1, 2 3 2 2 - - - - - - - - 3 - 2 - -

CO3

Interpret the Memory

Management concepts with

respect to Main Memory and

Virtual Memory.

3, 4 3 2 2 - - - - - - - - 3 - 2 - -

CO4

Discuss the Storage

Management concepts like File-

System Interface, File-System

Implementation and Mass-

Storage Structure

4, 5 3 2 2 - - - - - - - - 3 - 2 - -

CO 5

Elucidate the Protection features

in Operating System and case

study in Linux OS.

5 3 2 2 - - - - - - - - 3 - 2 - -

