

Internal Assessment Test 2 – August 2022

Scheme & Model Solution

Sub: Object Oriented Concepts Sub Code: 18CS45 Semester: IV Sections: A,B,C

MARKS

CO

RBT

Question 1a With the example write a short note on i) this ii) final 5 CO1 L2

Scheme this – points (2.5M)
final (2.5M)

2.5 + 2.5

Solution this keyword
 this keyword can be used to refer current class instance

variable.

 If there is ambiguity between the instance variable and

parameter, this keyword resolves the problem of

ambiguity
Understanding the problem withoUT this keyword

Let's understand the problem if we ;;don't use this keyword by

the example given below:

Output 0 null

 0 null

In the above example, parameter (formal arguments) and

instance variables are same that is why we are using this

keyword to distinguish between local variable and instance

variable
SolUTIOn of the above problem by this keyword

ii) The final keyword in java is used to restrict the user. The

final keyword can be used in many context. Final can be:

1. variable

2. method

3. class

1) final variable: If you make any

variable as final, you cannot change the

value of final variable(It will be constant).

2) final method: If you make any method as final, you

cannot override it.

3) final class:If you make any class as final, you cannot

extend it.

Question 1b Write a java program to print the sum, difference and product of two

complex numbers by creating a class named 'Complex' with separate

methods for each operation whose real and imaginary parts are

entered by user.

5 CO2 L3

Scheme Program (5M)
 Addition -1M
 Substruction – 1M
 Multiplication -2M
 Main function – 1M

5

Solution import java.util.Scanner;
public class Complex {
 double real, img;
 Complex(double r, double i){
 this.real = r;
 this.img = i;
 }
 public static Complex sum(Complex c1,
Complex c2) {
 Complex temp = new Complex(0, 0);
 temp.real = c1.real + c2.real;
 temp.img = c1.img + c2.img;
 return temp;
 }
 public static Complex diff(Complex c1,
Complex c2) {
 Complex temp = new Complex(0, 0);
 temp.real = c1.real - c2.real;
 temp.img = c1.img - c2.img;
 return temp;
 }
 public static Complex
Multiplication(Complex c1, Complex c2) {
 Complex temp = new Complex(0, 0);
 temp.real = (c1.real * c2.real) -
(c1.img * c2.img);
 temp.img = (c1.img * c2.real) +
(c1.real * c2.img);
 return temp;
 }
 public static void main(String[] args) {
 Scanner sc = new Scanner(System.in);
 System.out.println("Enter two
complex number: ");
 double a = sc.nextDouble(); double
b= sc.nextDouble();
 double c= sc.nextDouble(); double d=
sc.nextDouble();
 Complex c1 = new Complex(a,b);
 Complex c2 = new Complex(c,d);
 Complex temp = sum(c1, c2);
 Complex temp_diff = diff(c1, c2);
 Complex temp_mul =
Multiplication(c1, c2);
 System.out.printf("Sum is: "+
temp.real+" + "+ temp.img +"i");
 System.out.printf("Difference is: "+
temp_diff.real+" + "+ temp_diff.img +"i");
 System.out.printf("Difference is: "+
temp_mul.real+" + "+ temp_mul.img +"i");
 }

}

Question 2a Demonstrate any two utilities of “super” with programming example 5 CO1 L2

Scheme To call superclass constructors – 2.5

 Use -1M + Example – 1.5M

To access a member of the superclass: – 2.5
 Use -1M + Example – 1.5M

2+3

Solution Use -1
class Box {

double width; double height; double depth;

}

 Box (double w, double h, double d) {
 width = w; height = h; depth = d;

 }

 double volume() {

 return height * depth * width; } }

class BoxWeight extends Box {

 double weight;
 BoxWeight (double w, double h, double d, double m){

 super(w,h,d);

 weight = m;
 }

Use -2
class B extends A {
 int i;

 B(int a, int b) {

 super.i = a;

 i = b;
 }

 void show() {

 System.out.println("i in superclass: " + super.i);
 System.out.println("i in subclass:" + i);

 } }

class UseSuper {

 public static void main(String args[]) {
 B subOb = new B(1,2);

 subOb.show();

 }
}

Question 2b Create a class named 'Member' having the following members:

Data members: Name, Age, Phone number, Address, Basic Salary

(By default to 1000) It also has a method named 'printSalary' which

prints the salary of the members.

Two classes 'Employee' and 'Manager' inherits the 'Member' class.

Input all the data members to an employee and a manager. Print the

net-salary for Employee and Manager where there is 10% and 15%

increment of basic salary for Employee and Manager respectively

5 CO2 L3

Scheme Program (5M)
 Member class – 1M
 Employee class – 1.5 M
 Manager class – 1.5 M
 Main class – 1M

5

Solution Member.java

public class Member {

 String name,phn, address; int age;double sal;
 public Member(String n,String p,String a, int ag) {

 name =n; phn =p; address = a; age = ag; sal = 1000;

 }

 void printSalaty() {
 System.out.println("The salary is : "+sal);

 } }

Employee.java

public class Employee extends Member {
 public Employee(String n,String p,String a, int ag) {

 super(n,p,a,ag);

 }

 void printSalaty() {
 double netsal = sal + (sal*10)/100;

 System.out.println("The salary is : "+netsal);

 } }

Manager.java

public class Manager extends Member {
 public Manager(String n,String p,String a, int ag) {

 super(n,p,a,ag);

 }
 void printSalaty() {

 double netsal = sal + (sal*15)/100;

 System.out.println("The salary is : "+netsal);

 } }

Main class
public class Demo {

 public static void main(String[] args) {

 Employee emp = new Employee("Shyamasree",

"9999999", "BAngalore", 35);
 Manager mng = new Manager("Sanchari", "8888888",

"Mumbai", 38);

 emp.printSalaty();
 mng.printSalaty();

} }

Question 3a Justify the statement : “ Method overriding form a basis for

Dynamic Method Dispatch “ with suitable programming

example.

5 CO1 L3

Scheme Justification / Explanation – 2M
Program - 3M

5

Solution Dynamic method dispatch is the mechanism in which a call to an
overridden method is resolved at run time, rather than compile time.

Java uses the fact “a superclass reference variable can refer to a

subclass object, to resolve calls to overridden methods at run time.

When an overridden method is called by a reference, java determines

which version of that method to execute based on the type of object it
refers to.

It is the type of the object being referred to not the type of reference

variable that determines which version of an overridden method will
be executed.

Therefore, if a superclass contains a method that is overridden by a
subclass, then when different types of objects are referred to through

a superclass reference variable, different versions of the method are

executed.
Pictorial representation of dynamic method dispatch

Example program:

class A {

 void callme () {
 System.out.println("Inside A's callme method");

 } }

class B extends A {
 void callme () {

 System.out.println("Inside B's callme method");

 } }
class C extends A {

 void callme() {

 System.out.println("Inside C's callme method");

 }}
class Dispatch {

 public static void main(String args[]) {

 A a = new A();B b = new B();C c = new C();
 A r; // obtain a reference of type A

 r = a; // r refers to an A object

 r.callme(); // Calls A's version of callme()

 r = b; // r refers to a B object
 r.callme(); // Calls B's version of callme()

 r = c; // r refers to a C object

 r.callme(); // Calls C's version of callme()
 } }

Question 3b Can Java provides multiple inheritance? Justify your answer with

suitable example
5 CO1 L2

Scheme Explanation / Justification- 4 points (2M)
Program (3M)

2+3

Solution The mechanism of inheriting the features of more than one

base class into a single class is known as multiple inheritance.

Java does not support multiple inheritance but the multiple

inheritance can be achieved by using the interface.

Here you can derive a class from any number of base classes.

Deriving a class from more than one direct base class is called

multiple inheritance.

Java does not support multiple Inheritance

In Java Multiple Inheritance can be achieved through use of

Interfaces by implementing more than one interfaces in a class.
Multiple Inheritance is a feature of object oriented concept, where a

class can inherit properties of more than one parent class.

The problem occurs when there exist methods with the same signature
in both the super classes and subclass. On calling the method, the

compiler cannot determine which class method to be called and even

on calling which class method gets the priority

Therefore, in order to avoid such complications Java does not

support multiple inheritance of classes. But, a class can implement

two or more interfaces

A class can implement more than one interface, which can contain
default methods that have the same name. The Java compiler provides

some rules to determine which default method a particular class uses.

Example program to demonstrate multiple inheritance using

interface

// Program to demonstrate multiple inheritance using interface

// Define the interface I1

interface I1 {

 void showI1() ;

}

// Define the interface I2

interface I2 {

 void showI2();

}

// Define MInheritance that implements both I1 and I2

class MInheritance implements I1, I2 {

 // Implement I1's interface

 public void showI1() {

 System.out.println("Inside showI1");

 }

 // Implement I2's interface

 public void showI2() {

 System.out.println("Inside showI2");

 }

 }

 class TestMI {

 public static void main(String args[]) {

 MInheritance MI = new MInheritance();

 MI.showI1();

 MI.showI2();

 }

}

Output:

$ javac TestMI.java

$ java TestMI

Inside showI1

Inside showI2

Question 4a Define chained Exception. Illustrate how chained exception can

provide a root cause for the generated exception, with an suitable

example

5 CO1 L2

Scheme Definition – 1M
Example Program 4M

1+4

Solution The chained exception feature allows you to associate another

exception with an exception.

This second exception describes the cause of the first exception.

Exception chaining (also known as "nesting

exception") is a technique for handling the

exception, which occur one after another i.e. most

of the time

class ChainExcDemo {

 static void demoproc () {

 NullPointerException e = new NullPointerException ("top

layer");

 e.initCause(new ArithmeticException("cause"));

 throw e;

}

public static void main(String args[]) {

 try {

 demoproc();

 }

 catch (NullPointerException e) {

 System.out.println("Caught: " + e);

 System.out.println("Original cause : " + e.getCause());

 } } }

Question 4b Consider the following two Exceptions : “/ by 0” and “Array out of

bound “ Exceptions and demonstrate how LIFO approach is

followed during the execution of nested try statements

5 CO2 L3

Scheme Program -4M
Demonstration / Explanation – 1M

5

Solution class NestTry {
 public static void main(String args[]) {

 try {

 int a = args.length;
/* If no command-line args are present,the following statement will

generate a divide-by-zero exception. */

 int b = 42 / a;

 System.out.println("a = " + a);
 try { // nested try block

/* If one command-line arg is used, then a divide-by-zero exception

will be generated by the following code. */
 if(a==1) a = a/(a-a); // division by zero

/* If two command-line args are used,then generate an out-of-bounds

exception. */
 if(a==2) {

 int c[] = { 1 }; c[42] = 99; // generate an out-of-

bounds exception }

 }
 catch(ArrayIndexOutOfBoundsException e) {

 System.out.println("Array index out-of-bounds: " + e);

 } }
 catch(ArithmeticException e) {

 System.out.println("Divide by 0: " + e);

 } } }

The program works as follows. When you execute the program with no

command-line arguments, a divide-by-zero exception is generated by

the outer try block. Execution of the program with one command-line
argument generates a divide-by-zero exception from within the nested

try block. Since the inner block does not catch this exception, it is

passed on to the outer try block, where it is
handled. If you execute the program with two command-line

arguments, an array boundary exception is generated from within the

inner try block. Here are sample runs that illustrate each case:

$ javac NestTry.java

$ java NestTry

Divide by 0: java.lang.ArithmeticException: / by zero

$ java NestTry cmrit

a = 1
Divide by 0: java.lang.ArithmeticException: / by zero

Question 5a Formulate a table to explain how packages provides a fine-grained

access control to the classes and sub classes.
5 CO1 L2

Scheme Table formation – 2M
Explanation – 3M

2 + 3

Solution

Packages add another dimension to access control. Java provides many
levels of protection to allow fine-grained control over the visibility of

variables and methods within classes, subclasses, and packages.

Classes and packages are both means of encapsulating and containing
the name space and scope of variables and methods. Packages act as

containers for classes and other subordinate packages. Classes act as

containers for data and code. The class is Java’s smallest unit of
abstraction. Because of the interplay between classes and packages,

Java addresses four categories of visibility for class members:

• Subclasses in the same package
• Non-subclasses in the same package

• Subclasses in different packages

• Classes that are neither in the same package nor subclasses
The three access specifiers, private, public, and protected, provide a

variety of ways to produce the many levels of access required by these

categories. The following table sums up the interactions.
1) private access modifier

The private access modifier is accessible only within class.

2)default access modifier

If you don't use any modifier, it is treated as default by
default. The default modifier is accessible only within
package.

3)protected access modifier

 The protected access modifier is accessible within package and

outside the package but through inheritance only. The protected
access modifier can be applied on the data member, method and

constructor. It can't be applied on the class.

4) public access modifier

 The public access modifier is accessible everywhere. It has the

widest scope among all other modifiers.

Question 5b Write a Package MCA which has one class Student. Accept

student detail through parameterized constructor. Write display ()

method to display details. Create another class (main class) which

will use package and calculate total marks and percentage.

5 CO2 L3

Scheme Program (5M) 5

Solution Student.java
package mca;

public class Student

{

 public int r_no;

 public String name;

 public int a,b,c;

 int sum=0;

 public Student(int roll, String nm, int m1,int m2,int m3) {

 r_no = roll;

 name = nm;

 a = m1;

 b = m2;

 c = m3;

 sum = a+b+c;

 }

 public void display() {

 System.out.println("Roll_no : "+r_no);

 System.out.println("Name : "+name);

 System.out.println("-----MARKS-------");

 System.out.println("Sub 1 : "+a);

 System.out.println("Sub 2 : "+b);

 System.out.println("Sub 3 : "+c);

 System.out.println("Total : "+sum);

 System.out.println("percentage: "+sum/3);

 System.out.println("------------------");

 }

}

Studentmain.java
import mca.Student;

import java.util.*;

import java.lang.*;

import java.io.*;

class StudentMain {

 public static void main(String[] args) {

 String nm; int roll;

 Scanner sc = new Scanner(System.in);

 System.out.print("Enter Roll no:= ");

 roll = sc.nextInt();

 System.out.print("Enter Name:= ");

 nm = sc.next();

 int m1,m2,m3;

 System.out.print("Enter 3 sub mark:= ");

 m1 = sc.nextInt();

 m2 = sc.nextInt();

 m3 = sc.nextInt();

 Student s = new Student(roll,nm,m1,m2,m3);

 s.display();

 }

}

Question 6a Define the syntax for interface definition. Explain how interface can

be inherited with suitable example.
5 CO1 L2

Scheme syntax – 1M
Example Program (4M)

1 + 4

Solution access_specifier interface name {

 return-type method-name1 (parameter-list);

 return-type method-name2 (parameter-list);
 type final-varname1 = value;

 type final-varname2 = value;

 //...

 return-type method-nameN(parameter-list);
 type final-varnameN = value;

}

Interface can be Extended

● one interface can inherit another by use of the keyword

extends.

● When a class implements an interface that inherits another

interface, it must provide implementations for all methods

defined within the interface inheritance chain.

Eg:

// One interface can extend another.

Interface A {

 void meth1();

 void meth2();

}

// B now includes meth1() and meth2() --- it adds meth3()

interface B extends A {

 void meth3();

}

// This class must implement all of A and B

class MyClass implements B {

 public void meth1() {

 System.out.println(“Method1”);

 }

 public void meth2() {

 System.out.println(“Method2”);

 }

 public void meth3 () {

 System.out.println(“Method3”);

 }

}

Class IFExtend {

 public static void main(String args[]) {

 MyClass ob = new MyClass();

 ob.meth1();

 ob.meth2();

 ob.meth3();

}

Question 6b State the conceptual and structural differences of Abstract class and

interface

5 CO1 L2

Scheme Minimum 8 Differences – 5M 5

Solution

