
SOLUTIONS & SCHEME IAT3

SOLUTIONS & SCHEME IAT3

Date 29th Aug 2022

Course Name: Object oriented programming concepts Course Code: 18CS45

Q.No

.

Solution Scheme Mark s

1a. Explain different types of inheritance.

6+4M

class Animal{

void eat(){System.out.println("eating...");}

}

class Dog extends Animal{

void bark(){System.out.println("barking...");}

}

class TestInheritance{

public static void main(String args[]){

Dog d=new Dog();

d.bark();

d.eat();

}}

1b

Differentiate between throw and throws with example

4M

SOLUTIONS & SCHEME IAT3

Sr.

No.

Key throw throws

1

Definition Throw is a keyword

which is used to throw

an exception explicitly in

the program inside a

function or inside a

block of code.

Throws is a keyword used in

the method signature used to

declare an exception which

might get thrown by the

function while executing the

code.

2

Internal

implement

ation

Internally throw is

implemented as it is

allowed to throw only

single exception at a

time i.e we cannot throw

multiple exception with

throw keyword.

On other hand we can declare

multiple exceptions with

throws keyword that could get

thrown by the function where

throws keyword is used.

3

Type of

exception

With throw keyword we

can propagate only

unchecked exception i.e

checked exception

cannot be propagated

using throw.

On other hand with throws

keyword both checked and

unchecked exceptions can be

declared and for the

propagation checked

exception must use throws

keyword followed by specific

exception class name.

4

Syntax Syntax wise throw

keyword is followed by

the instance variable.

On other hand syntax wise

throws keyword is followed

by exception class names.

5

Declaratio

n

In order to use throw

keyword we should

know that throw

keyword is used within

the method.

On other hand throws

keyword is used with the

method signature.

public class JavaTester{

 public void checkAge(int age){

 if(age<18)

 throw new ArithmeticException("Not Eligible for voting");

 else

 System.out.println("Eligible for voting");

 }

 public static void main(String args[]){

 JavaTester obj = new JavaTester();

 obj.checkAge(13);

 System.out.println("End Of Program");

 }

}

SOLUTIONS & SCHEME IAT3

public class JavaTester{

 public int division(int a, int b) throws ArithmeticException{

 int t = a/b;

 return t;

 }

 public static void main(String args[]){

 JavaTester obj = new JavaTester();

 try{

 System.out.println(obj.division(15,0));

 }

 catch(ArithmeticException e){

 System.out.println("You shouldn't divide number by zero");

 }

 }

}

2a What is constructor? list different types of constructors? How is constructor

different from member function?

 Discuss the following terms with example :

 i) super ii) final iii) finalize() method (iv) Garbage Collector

 /* Here, Box uses a constructor to initialize the

dimensions of a box.

*/

class Box {

double width;

double height;

double depth;

// This is the constructor for Box.

Box() {

System.out.println("Constructing Box");

width = 10;

height = 10;

depth = 10;

}

// compute and return volume

double volume() {

return width * height * depth;

}

}

class BoxDemo6 {

public static void main(String args[]) {

// declare, allocate, and initialize Box objects

Box mybox1 = new Box();

Box mybox2 = new Box();

double vol;

// get volume of first box

vol = mybox1.volume();

System.out.println("Volume is " + vol);

// get volume of second box

vol = mybox2.volume();

System.out.println("Volume is " + vol);

}

}

SOLUTIONS & SCHEME IAT3

Parameterized Constructors

/* Here, Box uses a parameterized constructor to

initialize the dimensions of a box.

*/

class Box {

double width;

double height;

double depth;

// This is the constructor for Box.

Box(double w, double h, double d) {

width = w;

height = h;

depth = d;

}

// compute and return volume

double volume() {

return width * height * depth;

}

}

class BoxDemo7 {

public static void main(String args[]) {

// declare, allocate, and initialize Box objects

Box mybox1 = new Box(10, 20, 15);

Box mybox2 = new Box(3, 6, 9);

double vol;

// get volume of first box

vol = mybox1.volume();

System.out.println("Volume is " + vol);

// get volume of second box

vol = mybox2.volume();

System.out.println("Volume is " + vol);

}

}

The output from this program is shown here:

Volume is 3000.0

Volume is 162.0

2b Super

Garbage Collection

Since objects are dynamically allocated by using the new operator, you might be

wondering

how such objects are destroyed and their memory released for later reallocation. In

some

languages, such as C++, dynamically allocated objects must be manually released

by use of

a delete operator. Java takes a different approach; it handles deallocation for you

automatically.

SOLUTIONS & SCHEME IAT3

The technique that accomplishes this is called garbage collection. It works like this:

when no

references to an object exist, that object is assumed to be no longer needed, and the

memory

occupied by the object can be reclaimed. There is no explicit need to destroy objects

as in C++.

Garbage collection only occurs sporadically (if at all) during the execution of your

program.

It will not occur simply because one or more objects exist that are no longer used.

Furthermore,

different Java run-time implementations will take varying approaches to garbage

collection,

but for the most part, you should not have to think about it while writing your

programs.

he finalize() Method

Sometimes an object will need to perform some action when it is destroyed. For

example, if

an object is holding some non-Java resource such as a file handle or character font,

then you

might want to make sure these resources are freed before an object is destroyed. To

handle To add a finalizer to a class, you simply define the finalize() method. The

Java run time

calls that method whenever it is about to recycle an object of that class. Inside the

finalize()

method, you will specify those actions that must be performed before an object is

destroyed.

The garbage collector runs periodically, checking for objects that are no longer

referenced by

any running state or indirectly through other referenced objects. Right before an

asset is freed,

the Java run time calls the finalize() method on the object.

The finalize() method has this general form:

protected void finalize()

{

// finalization code here

}

Here, the keyword protected is a specifier that prevents access to finalize() by code

defined

outside its class.

Final

The keyword final has three uses. First, it can be used to create the equivalent of a

named constant. This use was described in the preceding chapter. The other two uses

of final apply to inheritance.

Using final to Prevent Overriding

While method overriding is one of Java’s most powerful features, there will be times

when you will want to prevent it from occurring. To disallow a method from being

overridden, specify final as a modifier at the start of its declaration. Methods

declared as final cannot be overridden. The following fragment illustrates final:

 class A {

SOLUTIONS & SCHEME IAT3

 final void meth() {

 System.out.println("This is a final method.");

 }

}

 class B extends A {

 void meth() { // ERROR! Can't override.

 System.out.println("Illegal!");

 }

}

Because meth() is declared as final, it cannot be overridden in B. If you attempt to

do so, a compile-time error will result.

Using final to Prevent Inheritance

Sometimes you will want to prevent a class from being inherited. To do this,

precede the class declaration with final. Declaring a class as final implicitly declares

all of its methods as final, too. As you might expect, it is illegal to declare a class as

both abstract and final since an abstract class is incomplete by itself and relies upon

its subclasses to provide complete implementations.

Here is an example of a final class:

 final class A {

 // ...

}

 // The following class is illegal.

 class B extends A { // ERROR! Can't subclass A

// ... }

As the comments imply, it is illegal for B to inherit A since A is declared as final.

Super:

super has two general forms. The first calls the superclass’ constructor. The second

is used to access a member of the superclass that has been hidden by a member of a

subclass. Each use is examined here.

Using super to Call Superclass Constructors

A Second Use for super

3 Define a class box with data members : width, height and length and define three

overloaded constructions to (i). Pass values for all 3 members (ii). Initialize all

values to -1 (iii). Assign same value to all three

 // A complete implementation of BoxWeight.

class Box {

 private double width;

 private double height;

 private double depth;

 // construct clone of an object

 Box(Box ob) { // pass object to constructor

 width = ob.width;

 height = ob.height;

 depth = ob.depth;

}

 // constructor used when all dimensions specified

 Box(double w, double h, double d) {

 width = w;

 height = h;

 depth = d;

}

 // constructor used when no dimensions specified

SOLUTIONS & SCHEME IAT3

 Box() {

 width = -1; // use -1 to indicate

 height = -1; // an uninitialized

 depth = -1; // box

}

 // constructor used when cube is created

 Box(double len) {

 width = height = depth = len;

 }

 // compute and return volume

 double volume() {

 return width * height * depth;

 }

}

// BoxWeight now fully implements all constructors.

class BoxWeight extends Box {

 double weight; // weight of box

 // construct clone of an object

 BoxWeight(BoxWeight ob) { // pass object to constructor

super(ob);

 weight = ob.weight;

 }

 // constructor when all parameters are specified

 BoxWeight(double w, double h, double d, double m) {

 super(w, h, d); // call superclass constructor

weight = m; }

 // default constructor

 BoxWeight() {

super();

weight = -1; }

 // constructor used when cube is created

 BoxWeight(double len, double m) {

super(len);

weight = m; }

}

class DemoSuper {

 public static void main(String args[]) {

 BoxWeight mybox1 = new BoxWeight(10, 20, 15, 34.3);

 BoxWeight mybox2 = new BoxWeight(2, 3, 4, 0.076);

 BoxWeight mybox3 = new BoxWeight(); // default

 BoxWeight mycube = new BoxWeight(3, 2);

 BoxWeight myclone = new BoxWeight(mybox1);

 double vol;

 vol = mybox1.volume();

 System.out.println("Volume of mybox1 is " + vol);

 System.out.println("Weight of mybox1 is " + mybox1.weight);

 System.out.println();

 vol = mybox2.volume();

 System.out.println("Volume of mybox2 is " + vol);

 System.out.println("Weight of mybox2 is " + mybox2.weight);

 System.out.println();

 vol = mybox3.volume();

 System.out.println("Volume of mybox3 is " + vol);

SOLUTIONS & SCHEME IAT3

 System.out.println("Weight of mybox3 is " + mybox3.weight);

 System.out.println();

 vol = myclone.volume();

 System.out.println("Volume of myclone is " + vol);

 System.out.println("Weight of myclone is " + myclone.weight);

 System.out.println();

 vol = mycube.volume();

 System.out.println("Volume of mycube is " + vol);

 System.out.println("Weight of mycube is " + mycube.weight);

 System.out.println();

} }

4a,b Define package. What are the steps involved in creating user defined package and

how to access them with an example.

Defining a Package

To create a package is quite easy: simply include a package command as the first

statement in a Java source file. Any classes declared within that file will belong to

the specified package.

This is the general form of the package statement:

package pkg;

Here, pkg is the name of the package. For example, the following statement creates a

package

called MyPackage. package MyPackage;

A Short Package Example

Keeping the preceding discussion in mind, you can try this simple package:

// A simple package

package MyPack;

class Balance {

 String name;

 double bal;

 Balance(String n, double b) {

 name = n;

 bal = b;

}

 void show() {

 if(bal<0)

 System.out.print("--> ");

 System.out.println(name + ": $" + bal);

} }

class AccountBalance {

 public static void main(String args[]) {

 Balance current[] = new Balance[3];

current[0] = new Balance("K. J. Fielding", 123.23);

 current[1] = new Balance("Will Tell", 157.02);

 current[2] = new Balance("Tom Jackson", -12.33);

 for(int i=0; i<3; i++) current[i].show();

}

}

Call this file AccountBalance.java and put it in a directory called MyPack.

Next, compile the file. Make sure that the resulting .class file is also in the MyPack

directory. Then, try executing the AccountBalance class, using the following

command line: java MyPack.AccountBalance

SOLUTIONS & SCHEME IAT3

Access Protection

Subclasses in the same package

Non-subclasses in the same package

Subclasses in different packages

Classes that are neither in the same package nor subclasses

The three access specifiers, private, public, and protected, provide a variety of

ways to produce the many levels of access required by these categories. Table 9-1

sums up the interactions.

4b Define the concept of multithreading in Java and explain the different phases in the

life cycle of thread, with a neat sketch.

In Java, Multithreading refers to a process of executing two or more threads

simultaneously for maximum utilization of the CPU. A thread in Java is

a lightweight process requiring fewer resources to create and share the process

resources.

New − A new thread begins its life cycle in the new state. It remains in this state

until the program starts the thread. It is also referred to as a born thread.

 Runnable − After a newly born thread is started, the thread becomes runnable. A

thread in this state is considered to be executing its task.

 Waiting − Sometimes, a thread transitions to the waiting state while the thread

waits for another thread to perform a task. Thread transitions back to the runnable

state only when another thread signals the waiting thread to continue executing.

 Timed Waiting − A runnable thread can enter the timed waiting state for a

specified interval of time. A thread in this state transitions back to the runnable state

when that time interval expires or when the event it is waiting for occurs.

 Terminated (Dead) − A runnable thread enters the terminated state when it

completes its task or otherwise terminates.

5 Write a Java program that implements a multi-thread application that has three

threads. First thread generates a random integer for every 1 second; second thread

computes the square of the number andprints; third thread will print the value of

cube of the number

 import java.util.*;

class second implements Runnable

{

public int x;

public second (int x)

SOLUTIONS & SCHEME IAT3

{

this.x=x;

}

public void run()

{

System.out.println("Second thread:Square of the number is "+x*x);

}

}

class third implements Runnable

{

public int x;

public third(int x)

{

this.x=x;

}

public void run()

{

System.out.println("third thread:Cube of the number is "+x*x*x);

}

}

class first extends Thread

{

public void run()

{

int num=0;

Random r=new Random();

try

{

for(int i=0;i<5;i++)

{

num=r.nextInt(100);

System.out.println("first thread generated number is "+num);

Thread t2=new Thread (new second(num));

t2.start();

Thread t3=new Thread(new third(num));

t3.start();

Thread.sleep(1000);

}

}

catch(Exception e)

{

System.out.println(e.getMessage());

}

}

}

public class multithread

{

public static void main(String args[])

{

first a=new first();

a.start();

}

SOLUTIONS & SCHEME IAT3

}

6 explain with syntax and example

isAlive()

Two ways exist to determine whether a thread has finished. First, you can call

isAlive() on the thread. This method is defined by Thread, and its general form is

shown here:

final boolean isAlive()

The isAlive() method returns true if the thread upon which it is called is still

running. It returns false otherwise.

 join()

This method waits until the thread on which it is called terminates. Its name comes

from the concept of the calling thread waiting until the specified thread joins it.

Additional forms of join() allow you to specify a maximum amount of time that

you want to wait for the specified thread to terminate.

// Using join() to wait for threads to finish.

class NewThread implements Runnable {

 String name; // name of thread

 Thread t;

 NewThread(String threadname) {

 name = threadname;

 t = new Thread(this, name);

 System.out.println("New thread: " + t);

 t.start(); // Start the thread

}

 // This is the entry point for thread.

 public void run() {

 try {

 for(int i = 5; i > 0; i--) {

 System.out.println(name + ": " + i);

 Thread.sleep(1000);

 }

 } catch (InterruptedException e) {

 System.out.println(name + " interrupted.");

}

 System.out.println(name + " exiting.");

 }

}

class DemoJoin {

 public static void main(String args[]) {

 NewThread ob1 = new NewThread("One");

 NewThread ob2 = new NewThread("Two");

 NewThread ob3 = new NewThread("Three");

 System.out.println("Thread One is alive: "

 + ob1.t.isAlive());

 System.out.println("Thread Two is alive: "

 + ob2.t.isAlive());

 System.out.println("Thread Three is alive: "

SOLUTIONS & SCHEME IAT3

 + ob3.t.isAlive());

 // wait for threads to finish

 try {

 System.out.println("Waiting for threads to finish.");

 ob1.t.join();

 ob2.t.join();

 ob3.t.join();

 } catch (InterruptedException e) {

 System.out.println("Main thread Interrupted");

}

 System.out.println("Thread One is alive: "

 + ob1.t.isAlive());

 System.out.println("Thread Two is alive: "

 + ob2.t.isAlive());

 System.out.println("Thread Three is alive: "

 + ob3.t.isAlive());

 System.out.println("Main thread exiting.");

 }

}

O/p:
New thread: Thread[One,5,main]

 New thread: Thread[Two,5,main]

 New thread: Thread[Three,5,main]

 Thread One is alive: true

 Thread Two is alive: true

 Thread Three is alive: true

 Waiting for threads to finish.

 One: 5

 Two: 5

 Three: 5

 One: 4

 Two: 4

 Three: 4

 One: 3

 Two: 3

 Three: 3

 One: 2

 Two: 2

 Three: 2

wait() tells the calling thread to give up the monitor and go to sleep until some

other thread enters the same monitor and calls notify().

notify() wakes up a thread that called wait() on the same object.

notifyAll() wakes up all the threads that called wait() on the same object. One of

the threads will be granted access.

 // A correct implementation of a producer and consumer.

class Q {

 int n;

 boolean valueSet = false;

 synchronized int get() {

 while(!valueSet)

try { wait();

 } catch(InterruptedException e) {

 System.out.println("InterruptedException caught");

}

SOLUTIONS & SCHEME IAT3

 System.out.println("Got: " + n);

 valueSet = false;

 notify();

 return n;

}

 synchronized void put(int n) {

 while(valueSet)

try { wait();

 } catch(InterruptedException e) {

 System.out.println("InterruptedException caught");

}

 this.n = n;

 valueSet = true;

 System.out.println("Put: " + n);

 notify();

} }

class Producer implements Runnable {

 Q q;

Producer(Q q) {

 this.q = q;

 new Thread(this, "Producer").start();

}

 public void run() {

 int i = 0;

 while(true) {

 q.put(i++);

} }

}

class Consumer implements Runnable {

 Q q;

 Consumer(Q q) {

 this.q = q;

 new Thread(this, "Consumer").start();

}

 public void run() {

 while(true) {

q.get(); }

} }

class PCFixed {

 public static void main(String args[]) {

 Q q = new Q();

 new Producer(q);

 new Consumer(q);

 System.out.println("Press Control-C to stop.");

 }

}

Put: 1

 Got: 1

 Put: 2

 Got: 2

 Put: 3

SOLUTIONS & SCHEME IAT3

