USN					

Internal Assessment Test 3 – Aug 2022

Sub:	Design and An	alvsis of Algor		Assessment	1 CSt S	Sub Code:	18CS42	Branch:	CSE		
Date:	26/08/2022	Duration:	90 mins	Max Marks:	50	Sem/Sec:		A,B&C		OF	BE
		Ar	nswer anv FI	VE FULL Quest	ions				ARK	СО	RBT
1	Define transit compute its tr			rshall's algorit	hm o	n the follow	ving graph to		<u>S</u> [10]	CO3	L3
	the n×n bool column is 1 is from the i th v Build the adj R4.	ean matrix T if there exist vertex to the acency matrix 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\Gamma = \left\{ \begin{array}{l} t_{ij} \end{array} \right\}, i$ s a nontriv $j^{th} \text{vertex}; i$ rix to get R $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0 0 1 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 1 1 0 0 0 1 0 0 0 0	lemendirect s 0.	at in the i the ded path of a ls algorithm R2 0 1 0 0 0 0 0 0 0 0	row and the positive length to create R1 1	j th gth) to			
2	Ans: Adjacency m	2 9	2 	0 2 10 5 2 0 9 ∞ 4 3 0 4 6 8 7 0	amic	programmi	ng.		[10]	CO3	L3
	The recurren $g(i, S) = \min_{j \in S}$	$n \{c_{ij} + g($									

Assuming that tour starts at 1, $\frac{2}{6} = \frac{9}{8} = \frac{4}{3} = \frac{3}{0} = \frac{4}{4}$ Assuming that tour starts at 1, $\frac{2}{6} = \frac{9}{8} = \frac{4}{3} = \frac{9}{0} = \frac{4}{3}$ $g(2, \Phi) = c_{21} = 2$ $g(3, \Phi) = c_{31} = 4$ $g(4, \Phi) = c_{41} = 6$ $g(2, \{3\}) = c_{23} + g(3, \Phi) = 9 + 4 = 13$ $g(2, \{4\}) = No edge from 2 to 4 = \infty g(3, \{2\}) = c_{32} + g(2, \Phi) = 3 + 2 = 5 g(3, \{4\}) = c_{34} + g(4, \Phi) = 4 + 6 = 10 g(4, \{2\}) = c_{34} + g(2, \Phi) = 8 + 2 = 10 g(4, \{3\}) = c_{43} + g(3, \Phi) = 7 + 4 = 11 g(2, \{3, 4\}) = \min\{c_{23} + g(2, \{4\}), c_{34} + g(4, \{3\})\} = \min\{19, \infty\} = 19 g(3, \{2, 4\}) = \min\{c_{24} + g(2, \{4\}), c_{34} + g(4, \{2\})\} = \min\{19, \infty\} = 19 g(3, \{2, 4\}) = \min\{c_{12} + g(2, \{4\}), c_{34} + g(4, \{2\})\} = \min\{21, 12\} = 12 g(1, \{2, 3, 4\}) = \min\{c_{12} + g(2, \{3, 4\}), c_{13} + g(3, \{2\})\}, c_{14} + g(4, \{2, 3\})\} = \min\{21, 24, 17\} = 17 Hence the path is 1 > 4 > 3 > 2 > 1 3 Explain multistage graph with example. Write the forward approach algorithm to solve multistage algorithm. • A multistage graph G(K, E) is a directed graph in which vertices are partitioned into k > 2 disjoint sets V_{k}, 1 < = i < k • If c_{4k} > c is a edge, then u \in V_{k} and u \in V_{k}, for some t. Let c(u, v) be the cost (or weight) of the edge c_{4k} > c • Sets V_{k} and V_{k} have just one vertex each. The vertex s in V_{k} is called source vertex and the vertex t in V_{k} is called the sink vertex. • The multistage graph problem is to find a minimum cost path from s to t. Ans: Forward Algorithm frame for t > t is an adjet of t > t on t > t of t > $	Assuming that tour starts at 1, $\frac{2}{6} \frac{9}{8} \frac{9}{7} \frac{1}{9} \frac{3}{9} \frac{1}{4}$ Assuming that tour starts at 1, $\frac{2}{6} \frac{9}{8} \frac{1}{7} \frac{1}{9} \frac$	$ \frac{2}{4} \frac{2}{3} \frac{0}{9} \frac{9}{4} $ Assuming that tour starts at 1, $\frac{1}{6} \frac{9}{8} \frac{1}{2} \frac{1}{0} \frac{9}{4} $ Assuming that tour starts at 1, $\frac{1}{6} \frac{1}{8} \frac{1}{2} \frac{1}{0} \frac{1}{9} \frac{1}{9} $ $ g(2, 0) = c_{21} = 2$ $ g(3, 0) = c_{31} = 4$ $ g(4, 0) = c_{41} = 6 $ $ g(2, (34)) = c_{32} + g(3, 0) = 9 + 4 = 13$ $ g(2, (14)) = 80$ $ g(3, (24)) = c_{33} + g(4, 0) = 4 + 6 - 10$ $ g(4, (24)) = c_{34} + g(4, 0) = 4 + 6 - 10$ $ g(4, (24)) = c_{34} + g(3, 0) = 7 + 4 = 11 $ $ g(2, (3, 4)) = \min(c_{32} + g(3, 4)) = c_{34} + g(4, (2)) = \min(c_{32} + g(3, (2))) = \min(c_{31} + c_{41} + c_{$		1				:			1
Explain multistage graph with example. Write the forward approach algorithm to solve multistage algorithm. • A multistage graph G=(V,E) is a directed graph in which vertices are partitioned into k>= 2 disjoint sets V _i , 1 <= i <= k • If <u,v> is a edge, then u ∈ V_i and v ∈ V_{i+1} for some i. Let c(u,v) be the cost (or weight) of the edge <u,v> • Sets V₁ and V_k have just one vertex each. The vertex s in V₁ is called source vertex and the vertex t in V_k is called the sink vertex. • The multistage graph problem is to find a minimum cost path from s to t. Ans: Forward Algorithm Fagraph (G, K, n, P) { Cost[n]:= 0.0; for j:= n-1 to 1 step -1 do { Let r be a vertex such that <j, r=""> is an edge of G and C[j, r] + cost[r] is minimum; //r is the vertex in v₁, and j be the vertex in v₁ Cost[j]:= C[j, r] + Cost[r]; //taking the value of min. cost edge d[j]:= r; } P[1]:= 1, P[k]:= n</j,></u,v></u,v>	Explain multistage graph with example. Write the forward approach algorithm to solve multistage algorithm. • A multistage algorithm. • A multistage graph G=(V,E) is a directed graph in which vertices are partitioned into k>= 2 disjoint sets V _t , 1 <= i <= k • If \(\lambda_t \lambda_t \rangle \) is a edge, then \(\lambda \in V_t \) and \(\lambda \in V_{t+1} \) for some \(i \). Let \(\lambda_t \lambda_t \) be the cost (or weight) of the edge \(< \lambda_t \rangle \). • Sets \(V_t \) and \(V_t \) have just one vertex each. The vertex \(s \) in \(V_t \) is called source vertex and the vertex \(t \) in \(V_t \) is called the sink vertex. • The multistage graph problem is to find a minimum cost path from \(s \) to \(t \). Ans: Forward Algorithm Fgraph (G, K, n, P) { Cost[n] = 0.0; for j = n-1 to 1 step -1 do { Let r be a vertex such that \(\laphi_t \rangle_t \) is an edge of G and \(\laphi_t \rangle_t \rangle_t \) + cost[r] is minimum; \(/l t \) is the vertex in \(v_{t+1} \) and j be the vertex in \(v_t \) Cost[j] = c[j, r] + Cost[r]; \(/l \) taking the value of min. cost edge d[j] = r; } P[1] = 1, \(P[k] = n \) for \(p = 2 \to k \cdot 1 \) P[j] = d[P[j-1]]; Obtain an optimal binary search tree for the following set of four keys with probabilities given below.	Explain multistage graph with example. Write the forward approach algorithm to solve multistage algorithm. • A multistage graph $G=(V,E)$ is a directed graph in which vertices are partitioned into $k>=2$ disjoint sets V_i , $1 <= i <= k$ • If $< u, v>$ is a edge, then $u \in V_i$ and $u \in V_{i+1}$ for some i . Let $c(u, v)$ be the cost (or weight) of the edge $< u, v>$ • Sets V_1 and V_k have just one vertex each. The vertex s in V_i is called source vertex and the vertex t in V_k is called the sink vertex. • The multistage graph problem is to find a minimum cost path from s to t . Ans: Forward Algorithm Fgraph (G, K, n, P) { Cost[n]=0.0; forj=n-1 to 1 step -1 do { Let v be a vertex such that v , v is an edge of v and v is minimum; v is the vertex in v_{u} , and v be the vertex in v , v cost[v]: v is the vertex in v , v and v is the vertex in v , v and v is the vertex in		$g(2,\Phi) = c_{21} = 2$ $g(3,\Phi) = c_{31} = 4$ $g(4,\Phi) = c_{41} = 6$ $g(2,\{3\}) = c_{23} + g(3,\Phi) = g(2,\{4\}) = \text{No edge from 2}$ $g(3,\{2\}) = c_{32} + g(2,\Phi) = g(3,\{4\}) = c_{34} + g(4,\Phi) = g(4,\{2\}) = c_{42} + g(2,\Phi) = g(4,\{3\}) = c_{43} + g(3,\Phi) = g(2,\{3,4\}) = \min\{c_{32} + g(3,\{2,4\}) = \min\{c_{32} + g(3,\{2,4\}) = \min\{c_{42} + g(2,\{2,3\}) = \min\{c_{42} + g(2,\{2,3\}) = \min\{c_{42} + g(2,\{2,3\}) = \min\{c_{42} + g(2,\{2,3,4\}) = \min\{c_{42} + g(2,\{2,2,3\}) = \min\{c_{42} + g(2,\{2,2,3,4\}) = \min\{c_{42} + g(2,\{2,2,3\}) = \min\{c_{42} + g(2,\{2,2,2\}) = \min\{c_{42} + g(2,\{2,2\}) = \min\{c_{42} + g(2,\{2,2\}) = \min\{c_{42} + g(2,\{2,2\}) = \min\{c_{42} + g(2,\{2,2\}) = \min\{c_{42} + $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(3}) } = mir (2 }) } = mir (2 }) } = mir	$a\{\infty, 14\} = 14$ $a\{21, 12\} = 12$				
solve multistage graph <i>G</i> =(<i>V,E</i>) is a directed graph in which vertices are partitioned into <i>k></i> = 2 disjoint sets <i>V_i</i> , 1 <= <i>i</i> <= <i>k</i> • If < <i>u,v</i> > is a edge, then <i>u</i> ∈ <i>V_i</i> and <i>v</i> ∈ <i>V_{i+1}</i> for some <i>i</i> . Let <i>c(u,v)</i> be the cost (or weight) of the edge < <i>u,v</i> > • Sets <i>V₁</i> and <i>V_k</i> have just one vertex each. The vertex <i>s</i> in <i>V₁</i> is called source vertex and the vertex <i>t</i> in <i>V_k</i> is called the sink vertex. • The multistage graph problem is to find a minimum cost path from <i>s</i> to <i>t</i> . Ans: Forward Algorithm Fgraph (G, K, n, P) { Cost[n]:= 0.0; for j:= n-1 to 1 step -1 do { Let <i>r</i> be a vertex such that < , r> is an edge of G and C[j, r] + cost[r] is minimum; //r is the vertex in <i>v_{i+1}</i> and j be the vertex in <i>v_i</i> Cost[j]:= C[j, r] + Cost[r]; //taking the value of min. cost edge d[j] := r; } P[1]:= 1, P[k]:= n	solve multistage algorithm. • A multistage graph <i>G</i> =(<i>V</i> , <i>E</i>) is a directed graph in which vertices are partitioned into <i>k</i> >= 2 disjoint sets <i>V_i</i> , 1 <= <i>i</i> <= <i>k</i> • If < <i>u</i> , <i>v</i> > is a edge, then <i>u</i> ∈ <i>V</i> ; and <i>v</i> ∈ <i>V_{i+1}</i> for some <i>i</i> . Let <i>c</i> (<i>u</i> , <i>v</i>) be the cost (or weight) of the edge < <i>u</i> , <i>v</i> > • Sets <i>V₁</i> and <i>V_k</i> have just one vertex each. The vertex <i>s</i> in <i>V₂</i> is called source vertex and the vertex <i>t</i> in <i>V_k</i> is called the sink vertex. • The multistage graph problem is to find a minimum cost path from <i>s</i> to <i>t</i> . Ans: Forward Algorithm Fgraph (G, K, n, P) { Cost[n]:= 0.0; for = n-1 to 1 step-1 do { Let r be a vertex such that < <i>j</i> , r> is an edge of G and C[<i>j</i> , r] + cost[r] is minimum; //r is the vertex in <i>v_k</i> , and j be the vertex in <i>v_j</i> cost[j]:= C[j, r] + Cost[r]; //taking the value of min. cost edge d[j]:= r; } P[1]:= 1, p[k]:= n for = 2 to k-1 P[j] = d[P[j-1]]; } Obtain an optimal binary search tree for the following set of four keys with probabilities given below.	solve multistage algorithm. • A multistage graph $G=(V,E)$ is a directed graph in which vertices are partitioned into $k>=2$ disjoint sets V_i , $1 <= i <= k$ • If $< u, v>$ is a edge, then $u \in V_i$ and $v \in V_{i+1}$ for some i . Let $c(u, v)$ be the cost (or weight) of the edge $< u, v>$ • Sets V_i and V_k have just one vertex each. The vertex s in V_i is called source vertex and the vertex t in V_k is called the sink vertex. • The multistage graph problem is to find a minimum cost path from s to t . Ans: Forward Algorithm Fgraph (G, K, n, P) { Cost(n]:= 0.0; for j := n-1 to 1 step -1 do { Let r be a vertex such that $< j$, r is an edge of G and $C[j, r]$ + cost $f(r)$ is minimum; $f(r)$ is the vertex in v_i , and $f(r)$ be the vertex in v_i . Cost($f(r)$):= $f(r)$:= $f(r)$		Hence the path is $1->4->$	<i>3 -> 2 -> 1</i>						
 A multistage graph G=(V,E) is a directed graph in which vertices are partitioned into k>= 2 disjoint sets V_i, 1 <= i <= k If <u,v> is a edge, then u ∈ V_i and v ∈ V_{i+1} for some i. Let c(u,v) be the cost (or weight) of the edge <u,v></u,v></u,v> Sets V₁ and V_k have just one vertex each. The vertex s in V₁ is called source vertex and the vertex t in V_k is called the sink vertex. The multistage graph problem is to find a minimum cost path from s to t. Ans: Forward Algorithm Fgraph (G, K, n, P) { Cost[n]:= 0.0; for j:= n-1 to 1 step -1 do { Let be a vertex such that ≤j, r> is an edge of G and C[j, r] + cost[r] is minimum; //r is the vertex in v_{i+1} and j be the vertex in v_i Cost[j] := C[j, r] + Cost[r]; //taking the value of min. cost edge d[j] := r; } P[1]:= 1, P[k]:= n 	 A multistage graph G=(V,E) is a directed graph in which vertices are partitioned into k>= 2 disjoint sets V_i, 1 <= i <= k • If <u,v> is a edge, then u ∈ V_i and v ∈ V_{i+1} for some i. Let c(u,v) be the cost (or weight) of the edge <u,v></u,v></u,v> • Sets V₁ and V₂ have just one vertex each. The vertexs in V₂ is called source vertex and the vertex t in V₂ is called the sink vertex. • The multistage graph problem is to find a minimum cost path from s to t. Ans: Forward Algorithm Fgraph (G, K, n, P) {	 A multistage graph G=(V,E) is a directed graph in which vertices are partitioned into k≥= 2 disjoint sets V_i, 1 <= i <= k If <u,v>= is a edge, then u ∈ V_i and v ∈ V_{i+1} for some i. Let c(u,v) be the cost (or weight) of the edge <u,v>= 0. Sets V₁ and V_k have just one vertex each. The vertex s in V₁ is called source vertex and the vertex t in V_k is called the sink vertex.</u,v></u,v> The multistage graph problem is to find a minimum cost path from s to t. Ans: Forward Algorithm Fgraph (G, K, n, P) Cost[n]=0.0; for = n-1 to 1 step-1 do { Let r be a vertex such that < , r > is an edge of G and C[, r] + cost[r] is minimum; //r is the vertex in v_i, and be the vertex in v_i cost[] = C[, r] + cost[r]; //taking the value of min. cost edge d[= C[, r] + cost[r] P[1]=1, P[k]=n for = 2 to k-1 P[] = d[P[-1]]; Obtain an optimal binary search tree for the following set of four keys with probabilities given below. (CO3) 1.2	3		ith example. Write	the forwar	d approach algoi	rithm to	[10]	CO3	L2
Fgraph (G, K, n, P) { Cost[n]:= 0.0; for j:= n-1 to 1 step -1 do { Let r be a vertex such that < j, r> is an edge of G and C[j, r] + cost[r] is minimum; //r is the vertex in v _{i-1} and j be the vertex in v _i Cost[j] := C[j, r] + Cost[r]; //taking the value of min. cost edge d[j] := r; } P[1]:= 1, P[k]:= n	Fgraph (G, K, n, P) { Cost[n]:= 0.0; for j:= n-1 to 1 step -1 do { Let r be a vertex such that < j, r> is an edge of G and C[j, r] + cost[r] is minimum; //r is the vertex in v _{i+1} and j be the vertex in v _i Cost[j]:= C[j, r] + Cost[r]; //taking the value of min. cost edge d[j]:= r; } P[1]:= 1, P[k]:= n for j:= 2 to k-1 P[j] = d[P[j-1]]; } Obtain an optimal binary search tree for the following set of four keys with probabilities given below. [10] CO3 L2	Fgraph (G, K, n, P) { Cost[n]:= 0.0; for j:= n-1 to 1 step -1 do { Let r be a vertex such that < j, r> is an edge of G and $C[j, r] + cost[r]$ is minimum; //r is the vertex in v_{i+1} and j be the vertex in v_{i} Cost[j]:= $C[j, r] + Cost[r]$; //taking the value of min. cost edge d[j]:= r; } P[1]:= 1, P[k]:= n for j:= 2 to k-1 P[j] = d[P[j-1]]; } Obtain an optimal binary search tree for the following set of four keys with probabilities given below. Key A B C D Probability 0.1 0.2 0.4 0.3		 vertices are partitione If <u,v> is a edge, then be the cost (or weight</u,v> Sets V₁ and V_k have just called source vertex are vertex. The multistage graph perform s to t. 	d into $k>=2$ disjoint set $u \in V_i$ and $v \in V_{i+1}$ for so of the edge $< u, v>$ tone vertex each. The id the vertex t in V_k is	ets V_i , $1 <= i <=$ some i . Let $c(i)$ e vertex s in V called the sin	<i>ı,v)</i> ₁ is k				
<pre>is minimum; //r is the vertex in v_{i+1} and j be the vertex in v_i Cost[j] := C[j, r] + Cost[r]; //taking the value of min. cost edge d[j] := r; } P[1]:= 1, P[k]:= n</pre>	is minimum; //r is the vertex in v _{i-1} and j be the vertex in v _i Cost[j] := C[j, r] + Cost[r]; //taking the value of min. cost edge d[j] := r; P[1]:= 1, P[k]:= n for j:= 2 to k-1 P[j] = d[P[j-1]]; Obtain an optimal binary search tree for the following set of four keys with probabilities given below. [10] CO3 L2	is minimum; //r is the vertex in v_{i+1} and j be the vertex in v_i Cost[j] := C[j, r] + Cost[r]; //taking the value of min. cost edge d[j] := r; } P[1]:= 1, P[k]:= n for j:= 2 to k-1 P[j] = d[P[j-1]]; } Obtain an optimal binary search tree for the following set of four keys with probabilities given below. Key A B C D Probability 0.1 0.2 0.4 0.3		Fgraph (G, K, n, P) {							
P[j] = d[P[j-1]];	Obtain an optimal binary search tree for the following set of four keys with probabilities given below.	Obtain an optimal binary search tree for the following set of four keys with probabilities given below. CO3 L2		is minimum; //r is the Cost[j] := C[j, r] + Cost[r]; d[j] := r; } P[1]:= 1 , P[k]:= n for j:= 2 to k-1 P[j] = d[P[j-1]];	vertex in v _{i+1} and j be the vert	ex in v _i					
Obtain an optimal binary search tree for the following set of four keys with probabilities given below.		Ans:	4	Obtain an optimal binary s probabilities given below.	A	В С	D	th	[10]	CO3	L2
	Ans:			Ans:							

the	rig	ht c	one, f	or tr	ee j '1	édots	jrec	ord	s k's	value	es giv	ing t	he Ŧ	Minima		
ī	j	0	1	2	3	4]	, i	0	1	2	3	4			
1	l	0	.1	.4	1.1	1.7		1		1	2	3	3			
2	2		0	.2	.8	1.4		2			2	3	3			
3	3			0	.4	1.0		3				3	3	A		
4	•				0	.3		4					4	optimal BST		
	5					0		5								
Use	Bac	cktr	ackii	ng to	solv	e 4-q	ueer	s p	robl	em. S	Show	the	stat	te space tree.	[10]	CC
						1								5 Q		

BEST OF LUCK

The subsets that have a sum of 30 are $\{5,10,15\}$ and $\{5,12,13\}$

	CO-PO and CO-PSO Mapping																		
Concer Ontromes PO PO PO PO PO PO PO P						PSO2	PSO3	PSO4											
CO1	Describe the computational solution to well-known	L1	1,2	2	3	2	2	-	2	-	-	2	-	-	-	2	-	-	2

	problems like searching and sorting																		
CO2	Estimate computational complexity of various algorithms.	L2	1,2,3,4,5	3	3	2	2	-	2	-	-	2	-	-	-	2	-	1	2
CO3	Devise an algorithm using appropriate design strategies for computation problems.	L3	2,3,4,5	3	3	2	2	-	2	-	-	2	-	-	-	2	-	1	2

COGNITIVE LEVEL	REVISED BLOOMS TAXONOMY KEYWORDS
L1	List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who, when, where, etc.
L2	summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate, discuss, extend
L3	Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate, change, classify, experiment, discover.
L4	Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain, infer.
L5	Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain, discriminate, support, conclude, compare, summarize.

PF	ROGRAM OUTCOMES (PO), PRO	GRAM	SPECIFIC OUTCOMES (PSO)	С	ORRELATION LEVELS
PO1	Engineering knowledge	PO7	Environment and sustainability	0	No Correlation
PO2	Problem analysis	PO8	Ethics	1	Slight/Low
PO3	Design/development of solutions	PO9	Individual and team work	2	Moderate/ Medium
PO4	Conduct investigations of complex problems	PO10	Communication	3	Substantial/ High
PO5	Modern tool usage				
PO6	The Engineer and society	PO12	Life-long learning		